988 resultados para RECONSTRUCTIONS
Resumo:
Complications and failures after microvascular free tissue transfer for lower extremity reconstruction have a negative impact on postoperative course and final outcome. Therefore, a 10-year analysis on lower extremity reconstruction with free flaps was performed with a special emphasis on patient co-morbidities such as cardiovascular diseases, diabetes mellitus, body mass index and history of smoking, in order to identify potential risk factors. Complications such as haematoma, seroma, infection, wound dehiscence, as well as partial flap loss, postoperative thrombosis of the anastomosis and eventual total flap loss were gathered from the medical records. Limb salvage was 100%, however 40% suffered from complications ranging from minor wound dehiscence to total flap loss. None of the above-mentioned potential risk factors was associated with an increased rate of complications. However, in flaps that required revision for thrombosis, the age of the patients was significantly higher in the group of flaps that eventually failed when compared to flaps that were salvaged. In conclusion, lower extremity reconstruction with microvascular free tissue transfer is a safe and reliable procedure with a high success rate, however partial flap loss remains an important issue. Increased age was the only factor identified with an increased risk for subsequent flap loss in cases that were revised for thrombosis.
Resumo:
This study reports on 15 mandibular reconstructions using the Dumbach Titan Mesh-System and particulate cancellous bone and marrow harvested from bilateral posterior ilia. All cases showed segmental defects. Eleven cases involved patients with malignant tumor. Six patients had received irradiation of 40-50 Gy. Reconstructions were performed immediately in 1 patient and secondarily in the remaining 14 patients. In 13 cases, mandibles were successfully reconstructed. Of these 13 patients, 9 reconstructions were completed without complications, whereas the other 4 cases showed complications. In 2 cases, reconstruction failed completely. Overall success rate was 87%. Statistical analysis revealed the extent of mandibular defect, but not malignancy of the original disease or radiotherapy of
Resumo:
OBJECTIVES: The objective of this systematic review was to assess the 5-year survival rates and incidences of complications associated with ceramic abutments and to compare them with those of metal abutments. METHODS: An electronic Medline search complemented by manual searching was conducted to identify randomized-controlled clinical trials, and prospective and retrospective studies providing information on ceramic and metal abutments with a mean follow-up time of at least 3 years. Patients had to have been examined clinically at the follow-up visit. Assessment of the identified studies and data abstraction was performed independently by three reviewers. Failure rates were analyzed using standard and random-effects Poisson regression models to obtain summary estimates of 5-year survival proportions. RESULTS: Twenty-nine clinical and 22 laboratory studies were selected from an initial yield of 7136 titles and data were extracted. The estimated 5-year survival rate of ceramic abutments was 99.1% [95% confidence interval (CI): 93.8-99.9%] and 97.4% (95% CI: 96-98.3%) for metal abutments. The estimated cumulative incidence of technical complications after 5 years was 6.9% (95% CI: 3.5-13.4%) for ceramic abutments and 15.9% (95% CI: 11.6-21.5%) for metal abutments. Abutment screw loosening was the most frequent technical problem, occurring at an estimated cumulative incidence after 5 years of 5.1% (95% CI: 3.3-7.7%). All-ceramic crowns supported by ceramic abutments exhibited similar annual fracture rates as metal-ceramic crowns supported by metal abutments. The cumulative incidence of biological complications after 5 years was estimated at 5.2% (95% CI: 0.4-52%) for ceramic and 7.7% (95% CI: 4.7-12.5%) for metal abutments. Esthetic complications tended to be more frequent at metal abutments. A meta-analysis of the laboratory data was impossible due to the non-standardized test methods of the studies included. CONCLUSION: The 5-year survival rates estimated from annual failure rates appeared to be similar for ceramic and metal abutments. The information included in this review did not provide evidence for differences of the technical and biological outcomes of ceramic and metal abutments. However, the information for ceramic abutments was limited in the number of studies and abutments analyzed as well as the accrued follow-up time. Standardized methods for the analysis of abutment strength are needed.
Resumo:
OBJECTIVES: To assess retrospectively the cumulative costs for the long-term oral rehabilitation of patients with birth defects affecting the development of teeth. METHODS: Patients with birth defects who had received fixed reconstructions on teeth and/or implants > or =5 years ago were asked to participate in a comprehensive clinical, radiographic and economic evaluation. RESULTS: From the 45 patients included, 18 were cases with a cleft lip and palate, five had amelogenesis/dentinogenesis imperfecta and 22 were cases with hypodontia/oligodontia. The initial costs for the first oral rehabilitation (before the age of 20) had been covered by the Swiss Insurance for Disability. The costs for the initial rehabilitation of the 45 cases amounted to 407,584 CHF (39% for laboratory fees). Linear regression analyses for the initial treatment costs per replaced tooth revealed the formula 731 CHF+(811 CHF x units) on teeth and 3369 CHF+(1183 CHF x units) for reconstructions on implants (P<.001). Fifty-eight percent of the patients with tooth-supported reconstructions remained free from failures/complications (median observation 15.7 years). Forty-seven percent of the patients with implant-supported reconstructions remained free from failures/complications (median observation 8 years). The long-term cumulative treatment costs for implant cases, however, were not statistically significantly different compared with cases reconstructed with tooth-supported fixed reconstructions. Twenty-seven percent of the initial treatment costs were needed to cover supportive periodontal therapy as well as the treatment of technical/biological complications and failures. CONCLUSION: Insurance companies should accept to cover implant-supported reconstructions because there is no need to prepare healthy teeth, fewer tooth units need to be replaced and the cumulative long-term costs seem to be similar compared with cases restored on teeth.
Resumo:
[1] We present quantitative autumn, summer and annual precipitation and summer temperature reconstructions from proglacial annually laminated Lake Silvaplana, eastern Swiss Alps back to AD 1580. We used X-ray diffraction peak intensity ratios of minerals in the sediment layers (quartz qz, plagioclase pl, amphibole am, mica mi) that are diagnostic for different source areas and hydro-meteorological transport processes in the catchment. XRD data were calibrated with meteorological data (AD 1800/1864–1950) and revealed significant correlations: mi/pl with SON precipitation (r = 0.56, p < 0.05) and MJJAS precipitation (r = 0.66, p < 0.01); qz/mi with MJJAS temperature (r = −0.72, p < 0.01)and qz/am with annual precipitation (r = −0.54, p < 0.05). Geological catchment settings and hydro-meteorological processes provide deterministic explanations for the correlations. Our summer temperature reconstruction reproduces the typical features of past climate variability known from independent data sets. The precipitation reconstructions show a LIA climate moister than today. Exceptionally wet periods in our reconstruction coincide with regional glacier advances.
Resumo:
This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.
Resumo:
The mid-Holocene (6 kyr BP; thousand years before present) is a key period to study the consistency between model results and proxy-based reconstruction data as it corresponds to a standard test for models and a reasonable number of proxy-based records is available. Taking advantage of this relatively large amount of information, we have compared a compilation of 50 air and sea surface temperature reconstructions with the results of three simulations performed with general circulation models and one carried out with LOVECLIM, a model of intermediate complexity. The conclusions derived from this analysis confirm that models and data agree on the large-scale spatial pattern but the models underestimate the magnitude of some observed changes and that large discrepancies are observed at the local scale. To further investigate the origin of those inconsistencies, we have constrained LOVECLIM to follow the signal recorded by the proxies selected in the compilation using a data-assimilation method based on a particle filter. In one simulation, all the 50 proxy-based records are used while in the other two only the continental or oceanic proxy-based records constrain the model results. As expected, data assimilation leads to improving the consistency between model results and the reconstructions. In particular, this is achieved in a robust way in all the experiments through a strengthening of the westerlies at midlatitude that warms up northern Europe. Furthermore, the comparison of the LOVECLIM simulations with and without data assimilation has also objectively identified 16 proxy-based paleoclimate records whose reconstructed signal is either incompatible with the signal recorded by some other proxy-based records or with model physics.
Resumo:
Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleoclimate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5–PMIP3 (Coupled Model Intercomparison Project Phase 5–Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change.
Resumo:
This progress report focuses on the contribution of tree-ring series to rockfall research and on recent development and challenges in the field. Dendrogeomorphic techniques have been used extensively since the early 2000s and several approaches have been developed to extract rockfall signals from tree-ring records of conifer trees. The reconstruction of rockfall chronologies has been hampered in the past by sample sizes that decrease as one goes back in time, as well as by a paucity of studies that include broadleaved tree species, which are in fact quite common in rockfall-prone environments. In this report, we propose a new approach considering impact probability and quantification of uncertainty in the reconstruction of rockfall time series as well as a quantitative estimate of presumably missed events. In addition, we outline new approaches and future perspectives for the inclusion of woody vegetation in hazard assessment procedures, and end with future thematic perspectives.
Resumo:
Tree ring–based temperature reconstructions form the scientific backbone of the current global change debate. Although some European records extend into medieval times, high-resolution, long-term, regional-scale paleoclimatic evidence is missing for the eastern part of the continent. Here we compile 545 samples of living trees and historical timbers from the greater Tatra region to reconstruct interannual to centennial-long variations in Eastern European May–June temperature back to 1040 AD. Recent anthropogenic warming exceeds the range of past natural climate variability. Increased plague outbreaks and political conflicts, as well as decreased settlement activities, coincided with temperature depressions. The Black Death in the mid-14th century, the Thirty Years War in the early 17th century, and the French Invasion of Russia in the early 19th century all occurred during the coldest episodes of the last millennium. A comparison with summer temperature reconstructions from Scandinavia, the Alps, and the Pyrenees emphasizes the seasonal and spatial specificity of our results, questioning those large-scale reconstructions that simply average individual sites.