943 resultados para REARING APPARATUS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For tiger shrimp, milkfish, and sea bass, larval rearing starts with the hatching of artificially spawned eggs. The eggs are stocked in larval rearing tanks, hatched, and metamorphosed larvae are fed and reared with good water management. Fry are harvested after about 30 days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The green peach aphid, Myzus persicae, is a major pest of tobacco, Nicotiana tabacum, in Yunnan province, China, where its control still depends on the use of insecticides. In recent years, the local government and farmers have sought to improve the biological control of this tobacco pest. In this paper, we present methods for mass rearing Aphidius gifuensis, a dominant endoparasitoid of M. persicae on tobacco plants in this region. The tobacco cultivar K326 (N. tabacum) was used as the host plant and M. persicae as the host insect. In the greenhouse, we collected tobacco seedlings for about 35 days (i.e., until the six-true-leaf stage), transferred them to 7.5-cm diameter pots, and kept these plants in the greenhouse for another 18 days. These pots were then transferred to an insectary-greenhouse, where the tobacco seedlings were inoculated with five to seven wingless adult M. persicae per pot. After 3 days, the infested seedlings were moved to a second greenhouse to allow the aphid population to increase, and after an additional 4 +/- 1 days when 182 +/- 4.25 aphid adults and nymphs were produced per pot, they were inoculated with A. gifuensis. With this rearing system, we were able to produce 256 +/- 8.8 aphid mummies per pot, with an emergence rate of 95.6 +/- 2.45%; 69% were females. The daily cost of parasite production (recurring costs only) was US$ 0.06 per 1000 aphid mummies. With this technique, we released 109 800 parasitoids in 1998, 196 000 in 1999, 780 000 in 2000, and 5 600 000 in 2001 during a 2-month period each year This production method is discussed with respect to countrywide usage in biological control and integrated control of M. persicae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil–structure interaction mechanisms. The significance of these observations is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early life-history of Chinese rock carp Procypris rabaudi was investigated during a 56-day rearing period: 318 artificially propagated P. rabaudi larvae were reared throughout metamorphosis in a small-scale recirculation system (345 L water volume, 10 x 18 L rearing tanks, 150 L storage and filter compartment with bioballs, 20-30 larvae L-1) at the Institute of Hydrobiology, Wuhan, Hubei Province, China. The newly hatched larvae had an initial total length of 8.93 +/- 0.35 mm SD (n = 10) at 3 days post-hatch and reached an average total length of 33.29 mm (+/- 1.88 mm SD, n = 10) 56 days after hatching. Length increment averaged 0.45 mm day(-1), resulting in a mean growth of 24.4 mm within the 56-day period. High mortality rates of up to 92% derived from an introduced fungus infection and subsequent treatment stress with malachite green. Our results indicate that Chinese rock carp can be raised successfully from artificially fertilized eggs. We therefore assume this species to be a candidate for commercial aquaculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precociously sexual maturation in large yellow crocker Pseudosciaena crocea has become a serious problem. In an attempt to solve this problem, the production of sterile triploids could be an effective strategy. In this study, triploid P. crocea was obtained by subjecting fertilized eggs to pressure shock. Flow-cytometry analysis was used to assess ploidy level. In terms of triploid rate and hatching rate, the optimal conditions of pressure shock for triploidy induction in P. crocea were 7500 psi for 3 min shock at 3 min after fertilization at 20 degrees C. With the application of these parameters, 100% triploid fish were produced. During the first rearing year, triploid P. crocea had a similar growth performance compared with its diploid counterpart before the age of 8 months and showed a significant advantage at the age of 10 and 12 months in body weight and body length (P < 0.05). At the age of 12 months, the carcass weight of triploids was markedly higher than that of diploid control, and gonadal somatic index was significantly lower than that of their diploid control. During the first rearing year, survival in triploid group was 76.44%, inferior to its diploid control (83.21%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In laboratory conditions, effects of rearing temperature and stocking density were examined on hatching of fertilized egg and growth of auricularia larvae of Apostichopus japonicus respectively. Data series like larval length and density, metamorphic time, and survival rate of the larvae were recorded. Statistics showed that for A. japonicus, survival rate (from fertilized egg to late auricularia) decreased significantly with the increasing rearing temperature (P < 0.05). At different temperatures SGR was statistically significant as well (P < 0.05) from day 1, and maximal SGR was found on day 9 at 24A degrees C (159.26 +/- 3.28). This study clearly indicated that at low temperature (< 24A degrees C), metamorphic rate was remarkably higher than at higher temperature (> 26A degrees C). Hatching rate was significantly different between 0.2-5 ind./ml groups and 20-50 ind./ml groups. Rearing larvae at the higher density had the smaller maximal-length, whereas needed longer time to complete metamorphosis. This study suggested that 21A degrees C and 0.4 ind./ml can be used as the most suitable rearing temperature and stocking density for large -scale artificial breeding of A. japonicus's larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published