953 resultados para RBCL SEQUENCES
Resumo:
High throughput genome (HTG) and expressed sequence tag (EST) sequences are currently the most abundant nucleotide sequence classes in the public database. The large volume, high degree of fragmentation and lack of gene structure annotations prevent efficient and effective searches of HTG and EST data for protein sequence homologies by standard search methods. Here, we briefly describe three newly developed resources that should make discovery of interesting genes in these sequence classes easier in the future, especially to biologists not having access to a powerful local bioinformatics environment. trEST and trGEN are regularly regenerated databases of hypothetical protein sequences predicted from EST and HTG sequences, respectively. Hits is a web-based data retrieval and analysis system providing access to precomputed matches between protein sequences (including sequences from trEST and trGEN) and patterns and profiles from Prosite and Pfam. The three resources can be accessed via the Hits home page (http://hits. isb-sib.ch).
Resumo:
The ribonucleotide reductase gene tandem bnrdE/bnrdF in SPbeta-related prophages of different Bacillus spp. isolates presents different configurations of intervening sequences, comprising one to three of six non-homologous splicing elements. Insertion sites of group I introns and intein DNA are clustered in three relatively short segments encoding functionally important domains of the ribonucleotide reductase. Comparison of the bnrdE homologs reveals mutual exclusion of a group I intron and an intein coding sequence flanking the codon that specifies a conserved cysteine. In vivo splicing was demonstrated for all introns. However, for two of them a part of the mRNA precursor molecules remains unspliced. Intergenic bnrdE-bnrdF regions are unexpectedly long, comprising between 238 and 541 nt. The longest encodes a putative polypeptide related to HNH homing endonucleases.
Resumo:
Twelve primers to amplify microsatellite markers from the chloroplast genome of Lolium perenne were designed and optimized using de novo sequencing and in silico sequences. With one exception, each locus was polymorphic with a range from two to nine alleles in L. perenne. The newly developed primer pairs cross-amplified in different species of Lolium and in 50 other grass species representing nine grass subfamilies.
Resumo:
Random single pass sequencing of cDNA fragments, also known as generation of Expressed Sequence Tags (ESTs), has been highly successful in the study of the gene content of higher organisms, and forms an integral part of most genome projects, with the objective to identify new genes and targets for disease control and prevention and to generate mapping probes. In the Trypanosoma cruzi genome project, EST sequencing has also been a starting point, and here we report data on the first 797 sequences obtained, partly from a CL Brener epimastigote non-normalized library, partly on a normalized library. Only around 30% of the sequences obtained showed similarity with Genbank and dbEST databases, half of which with sequences already reported for T. cruzi.
Resumo:
Three species of flatworms from the genus Echinococcus (E. granulosus, E. multilocularis and E. vogeli) and four strains of E. granulosus (cattle, horse, pig and sheep strains) were analysed by the PCR-SSCP method followed by sequencing, using as targets two non-coding and two coding (one nuclear and one mitochondrial) genomic regions. The sequencing data was used to evaluate hypothesis about the parasite breeding system and the causes of genetic diversification. The calculated recombination parameters suggested that cross-fertilisation was rare in the history of the group. However, the relative rates of substitution in the coding sequences showed that positive selection (instead of purifying selection) drove the evolution of an elastase and neutrophil chemotaxis inhibitor gene (AgB/1). The phylogenetic analyses revealed several ambiguities, indicating that the taxonomic status of the E. granulosus horse strain should be revised
Resumo:
This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.
Resumo:
Mammalian genomes contain highly conserved sequences that are not functionally transcribed. These sequences are single copy and comprise approximately 1-2% of the human genome. Evolutionary analysis strongly supports their functional conservation, although their potentially diverse, functional attributes remain unknown. It is likely that genomic variation in conserved non-genic sequences is associated with phenotypic variability and human disorders. So how might their function and contribution to human disorders be examined?
Resumo:
OBJECTIVE: To compare three spin-echo sequences, transverse T1-weighted (T1WI), transverse fat-saturated (FS) T2-weighted (T2WI), and transverse gadolinium-enhanced (Gd) FS T1WI, for the visualisation of normal and abnormal finger A2 pulley with magnetic resonance (MR) imaging at 3 tesla (T). MATERIALS AND METHODS: Sixty-three fingers from 21 patients were consecutively investigated. Two musculoskeletal radiologists retrospectively compared all sequences to assess the visibility of normal and abnormal A2 pulleys and the presence of motion or ghost artefacts. RESULTS: Normal and abnormal A2 pulleys were visible in 94% (59/63) and 95% (60/63) on T1WI sequences, in 63% (40/63) and 60% (38/63) on FS T2WI sequences, and in 87% (55/63) and 73% (46/63) on Gd FS T1WI sequences when read by the first and second observer, respectively. Motion and ghost artefacts were higher on FS T2WI sequences. Seven among eight abnormal A2 pulleys were detected, and were best depicted with Gd FS T1WI sequences in 71% (5/7) and 86% (6/7) by the first and the second observer, respectively. CONCLUSION: In 3-T MRI, the comparison between transverse T1WI, FS T2WI, and Gd FS T1WI sequences shows that transverse T1WI allows excellent depiction of the A2 pulley, that FS T2WI suffers from a higher rate of motion and ghost artefacts, and transverse Gd FS T1WI is the best sequence for the depiction of abnormal A2 pulley.
Resumo:
hilA gene promoter, component of the Salmonella Pathogenicity Island 1, has been found in Salmonella serovar Typhimurium, being important for the regulation of type III secretion apparatus genes. We detected hilA gene sequences in Salmonella serovars Typhi, Enteritidis, Choleraesuis, Paratyphi A and B, and Pullorum, by polymerase chain reaction (PCR) and hybridization techniques. The primers to carry out PCR were designed according to hilA sequence. A low stringency hybridization with the probe pVV441 (hilA open-reading-frame plasmid) was carried out. To find hilA gene sequences in other Salmonella sp. suggest that these serovars could have similar sequences of this kind of virulence genes.
Resumo:
The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.
Resumo:
In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3%) sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds). Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8%) contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds). The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds). From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.
Resumo:
During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.
Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
Resumo:
Mammalian and avian genomes are characterized by a substantial spatial heterogeneity of GC-content, which is often interpreted as reflecting the effect of local GC-biased gene conversion (gBGC), a meiotic repair bias that favors G and C over A and T alleles in high-recombining genomic regions. Surprisingly, the first fully sequenced nonavian sauropsid (i.e., reptile), the green anole Anolis carolinensis, revealed a highly homogeneous genomic GC-content landscape, suggesting the possibility that gBGC might not be at work in this lineage. Here, we analyze GC-content evolution at third-codon positions (GC3) in 44 vertebrates species, including eight newly sequenced transcriptomes, with a specific focus on nonavian sauropsids. We report that reptiles, including the green anole, have a genome-wide distribution of GC3 similar to that of mammals and birds, and we infer a strong GC3-heterogeneity to be already present in the tetrapod ancestor. We further show that the dynamic of coding sequence GC-content is largely governed by karyotypic features in vertebrates, notably in the green anole, in agreement with the gBGC hypothesis. The discrepancy between third-codon positions and noncoding DNA regarding GC-content dynamics in the green anole could not be explained by the activity of transposable elements or selection on codon usage. This analysis highlights the unique value of third-codon positions as an insertion/deletion-free marker of nucleotide substitution biases that ultimately affect the evolution of proteins.