971 resultados para RAW 264.7 cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: With the emergence of strains resistant to conventional antibiotics, it is important to carry studies using alternative methods to control these microorganisms causing important infections, such as the use of products of plant origin that has demonstrated effective antimicrobial activity besides biocompatibility. Therefore, this study aimed to evaluate the antimicrobial activity of plant extracts of Equisetum arvense L., Glycyrrhiza glabra L., Punica granatum L. and Stryphnodendron barbatimam Mart. against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Candida albicans, Candida tropicalis, and Candida glabrata, and to analyze the cytotoxicity of these extracts in cultured murine macrophages (RAW 264.7).Methods: Antimicrobial activity of plant extracts was evaluated by microdilution method based on Clinical and Laboratory Standards Institute (CLSI), M7-A6 and M27-A2 standards. The cytotoxicity of concentrations that eliminated the microorganisms was evaluated by MTT colorimetric method and by quantification of proinflammatory cytokines (IL-1β and TNF-α) using ELISA.Results: In determining the minimum microbicidal concentration, E. arvense L., P. granatum L., and S. barbatimam Mart. extracts at a concentration of 50 mg/mL and G. glabra L. extract at a concentration of 100 mg/mL, were effective against all microorganisms tested. Regarding cell viability, values were 48% for E. arvense L., 76% for P. granatum L, 86% for S. barbatimam Mart. and 79% for G. glabra L. at the same concentrations. About cytokine production after stimulation with the most effective concentrations of the extracts, there was a significant increase of IL-1β in macrophage cultures treated with S. barbatimam Mart. (3.98 pg/mL) and P. granatum L. (7.72 pg/mL) compared to control (2.20 pg/mL) and a significant decrease of TNF-α was observed in cultures treated with G. glabra L. (4.92 pg/mL), S. barbatimam Mart. (0.85 pg/mL), E. arvense L. (0.83 pg/mL), and P. granatum L. (0.00 pg/mL) when compared to control (41.96 pg/mL).Conclusions: All plant extracts were effective against the microorganisms tested. The G. glabra L. extract exhibited least cytotoxicity and the E. arvense L. extract was the most cytotoxic. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atualmente são conhecidas aproximadamente 10.000 substâncias do metabolismo secundário de invertebrados e microorganismos marinhos. Dentre os organismos marinhos estudados do ponto de vista químico e farmacológico, destacam-se, as esponjas, as ascídias, os briozoários e os octocorais. No entanto, pouco se sabe quanto ao potencial imunomodulador de compostos isolados de microrganismos marinhos, em especial daqueles isolados da costa brasileira. A propriedade anti-inflamatória de diferentes extratos brutos foi inicialmente avaliada pelo potencial destes compostos quanto à inibição da produção de óxido nítrico (NO) em linhagem de macrófagos, RAW 264.7. Posteriormente as amostras que se mostraram promissoras foram também avaliadas em relação ao potencial imunomodulador quanto a expressão de moléculas de superfície relacionadas migração (Mac-1 ou CD11b) e ativação celular (CD80 e CD86) em linhagens de macrófagos estimulados com LPS. Nossos resultados mostram que dentre as 289 amostras testadas apenas o extrato DLM33 e as substâncias Ma(M3%)J-MeOH e Dr(M3%)6-MeOH/H2O foram inicialmente considerados promissores quanto capacidade de inibir a síntese de NO por macrófagos. O extrato DLM33 foi capaz de de modular apenas a porcentagem de macrófagos positivos para CD80 na presença de LPS. No entanto, a substância Dr(M3%)6-MeOH/H2O não se mostrou eficiente quanto a modulação da expressão de moléculas de superfície Mac-1, CD80 e CD86. Surpreendentemente, a substância Ma(M3%)J-MeOH apresentou um potencial imunoestimulador quanto a expressão de Mac-1+/CD80+, mas não de CD86, em macrófagos sugerindo um possível efeito adjuvante desta substância. O efeito imunoestimulador da substância Ma(M3%)J-MeOH será futuramente investigado utilizando diferentes abordagens in vitro e in vivo para validar os resultados obtidos... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acalypha californica Benth., is a plant in the northwestern region from Mexico, commonly known as "cancer herb" and used in traditional medicine for treating cancer. In the present study we have investigated the antiproliferative activity of methanolic extract of A. californica and its fractions in cancer cell lines and phytochemical analysis and mechanism of apoptosis of the fractions with antiproliferative activity. The antiproliferative activity of methanol extract and its fractions of solvents were evaluated by MTT assay against the M12.A(k).C3.F6, RAW 264.7, HeLa and L929 cell lines. Active fractions were fractionated by molecular exclusion chromatography, HPLC and MPLC. The identification of compounds was performed by NMR and FIA-ESI-IT-MS/MS analysis. Apoptotic mechanism was analyzed by flow cytometry, determining the reduction in the mitochondrial membrane potential (JC-1) and the activity of caspases 3,8 and 9. Cell viability assays showed that the hexane fraction of the methanol extract of the plant has significant effects against cancer lines RAW 264.7 (IC50 = 52.08 +/- 1.06 mu g/mL) and HeLa (IC50 = 46.77 +/- 1.09 mu g/mL), the residual fraction showed a selective effect on cell lines M12.A(k).C3.F6 (IC50 = 59.90 +/- 1.05 mu g/mL), RAW 264.7 (IC50 = 58.93 +/- 1.26 mu g/mL) and HeLa (IC50 = 50.11 +/- 1.135 mu g/mL) compared to the control cell line L929 (IC50 = 100.00 +/- 1.09 mu g/mL). The chemical characterization of the active fractions allowed the identification of p-sitosterol and stigmasterol in hexane fraction and some phenolic acids, proanthocyanidins and flavonoids in the residual fraction. The methanol extract and hexane fraction reduces mitochondrial membrane potential significantly and activates caspases 3, 8 and 9. Because of the antiproliferative activity observed, our results provide a rational basis for the use of extracts of A. californica in treating various types of cancer in traditional medicine from Mexico. The extracts induce apoptosis via activation of caspases. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos últimos anos, o Ministério da Saúde do Brasil e a Organização Mundial da Saúde tem apoiado a investigação de novas tecnologias que possam contribuir para a vigilância, novos tratamentos e controle da leishmaniose visceral no país. Assim, o objetivo deste trabalho foi isolar compostos de plantas do bioma Caatinga, e investigar a toxicidade destes compostos contra as formas promastigotas e amastigotas de Leishmania infantum chagasi, principal parasita responsável pela leishmaniose visceral na América do Sul, e avaliar a sua capacidade para inibir a enzima acetil-colinesterase (AChE). Após a exposição aos compostos em estudo, foram realizados testes utilizando a forma promastigota que expressa luciferase e ELISA in situ para medir a viabilidade das formas promastigotas e amastigota, respectivamente. O ensaio colorimétrico MTT foi realizado para determinar a toxicidade destas substâncias utilizando células monocíticas murina RAW 264.7. Todos os compostos foram testados in vitro para as sua propriedade anti-colinesterásica. Um cumarina, escoparona, foi isolada a partir de hastes de Platymiscium floribundum, e os flavonóides, rutina e quercetina, foram isolados a partir de grãos de Dimorphandra gardneriana. Estes compostos foram purificados, utilizando cromatografia em coluna gel eluída com solventes orgânicos em misturas de polaridade crescente, e identificados por análise espectral. Nos ensaios leishmanicidas, os compostos fenólicos mostraram eficácia contra as formas extracelulares promastigotas, com EC50 para escoporona de 21.4µg/mL e para quercetina e rutina 26 e 30.3µg/mL, respectivamente. Os flavonóides apresentaram resultados comparáveis à droga controle, a anfotericina B, contra as formas amastigotas com EC50 para quercetina e rutina de 10.6 e 43.3µg/mL, respectivamente. Os compostos inibiram a enzima AChE com halos de inibição variando de 0,8 a 0,6cm, indicando um possível mecanismo de ação para a atividade leishmanicida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased incidence of visceral leishmaniasis (VL) in Brazil is due to a lack of effective disease control measures. In addition to that, no effective treatment exists for canine VL in response to synthetic drugs. Thus, the objective of this study was to evaluate the effect of the essential oils of Coriandrum sativum and Lippia sidoides, and oleoresin from Copaifera reticulata, on Leishmania chagasi promastigotes and amastigotes. We also examined the toxicity of these treatments on the murine monocyte cell line RAW 264.7. To determine the IC50 a MTT test (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed on promastigotes, and an in situ ELISA assay was conducted on amastigotes. Here, we demonstrate that oleoresin from C. reticulata was effective against both promastigotes (IC50 of 7.88 µg.mL-1) and amastigotes (IC50 of 0.52 µg.mL-1), and neither of the two treatments differed significantly (p > 0.05) from pentamidine (IC50 of 2.149 µg.mL-1) and amphotericin B (IC50 of 9.754 µg.mL-1). Of the three plant oils tested, only oleoresin showed no toxicity toward monocyte, with 78.45% viability after treatment. Inhibition of promastigote and amastigote growth and the lack of cytotoxicity by C. reticulata demonstrate that oleoresin may be a viable option for analyzing the in vivo therapeutic effects of leishmanicidal plants