992 resultados para RANS (Reynolds-Averaged Navier-Stokes)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.
Resumo:
Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.
Resumo:
Typical streak computations present in the literature correspond to linear streaks or to small amplitude nonlinear streaks computed using DNS or nonlinear PSE. We use the Reduced Navier-Stokes (RNS) equations to compute the streamwise evolution of fully non-linear streaks with high amplitude in a laminar flat plate boundary layer. The RNS formulation provides Reynolds number independent solutions that are asymptotically exact in the limit $Re \gg 1$, it requires much less computational effort than DNS, and it does not have the consistency and convergence problems of the PSE. We present various streak computations to show that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, that end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results.
Resumo:
The stability analysis of open cavity flows is a problem of great interest in the aeronautical industry. This type of flow can appear, for example, in landing gears or auxiliary power unit configurations. Open cavity flows is very sensitive to any change in the configuration, either physical (incoming boundary layer, Reynolds or Mach numbers) or geometrical (length to depth and length to width ratio). In this work, we have focused on the effect of geometry and of the Reynolds number on the stability properties of a threedimensional spanwise periodic cavity flow in the incompressible limit. To that end, BiGlobal analysis is used to investigate the instabilities in this configuration. The basic flow is obtained by the numerical integration of the Navier-Stokes equations with laminar boundary layers imposed upstream. The 3D perturbation, assumed to be periodic in the spanwise direction, is obtained as the solution of the global eigenvalue problem. A parametric study has been performed, analyzing the stability of the flow under variation of the Reynolds number, the L/D ratio of the cavity, and the spanwise wavenumber β. For consistency, multidomain high order numerical schemes have been used in all the computations, either basic flow or eigenvalue problems. The results allow to define the neutral curves in the range of L/D = 1 to L/D = 3. A scaling relating the frequency of the eigenmodes and the length to depth ratio is provided, based on the analysis results.
Resumo:
El objetivo de este trabajo es realizar un estudio del comportamiento de un fluido en flujo laminar. En primer lugar se realizará una breve introducción Histórica, con el fin de situar al lector en la época donde suceden los acontecimientos más importantes relativos a la mecánica de fluidos. Se presentarán a las figuras más importantes de la mecánica de fluidos moderna, como Sir Gabriel Stokes o Osborne Reynolds, así como los acontecimientos más importantes. A continuación se expondran las ecuaciones que rigen el comportamiento de un fluido, las ecuaciones de Navier-Stokes y la ecuación de Reynolds, con el objetivo de ayudar al lector a entender los análisis posteriores que se realizarán sobre dichas ecuaciones. En tercer lugar se analizará la ecuación de Reynolds, la existencia y unicidad de soluciones, para seguidamente, realizar una simulación del problema. Dicha simulación se ha realizado en un script, bajo la herramienta Matlab, se explicará como se ha realizado la simulación y se expondrán ejemplos de los casos de un fluido compresible y uno incompresible para diversas ecuaciones. Seguidamente se describe el fenómeno de la capa límite y se explica con un ejemplo en un fluido compresible. Para finalizar se exponen las conclusiones obtenidas en la realización de este trabajo.
Resumo:
The three-dimensional wall-bounded open cavity may be considered as a simplified geometry found in industrial applications such as leading gear or slotted flats on the airplane. Understanding the three-dimensional complex flow structure that surrounds this particular geometry is therefore of major industrial interest. At the light of the remarkable former investigations in this kind of flows, enough evidences suggest that the lateral walls have a great influence on the flow features and hence on their instability modes. Nevertheless, even though there is a large body of literature on cavity flows, most of them are based on the assumption that the flow is two-dimensional and spanwise-periodic. The flow over realistic open cavity should be considered. This thesis presents an investigation of three-dimensional wall-bounded open cavity with geometric ratio 6:2:1. To this aim, three-dimensional Direct Numerical Simulation (DNS) and global linear instability have been performed. Linear instability analysis reveals that the onset of the first instability in this open cavity is around Recr 1080. The three-dimensional shear layer mode with a complex structure is shown to be the most unstable mode. I t is noteworthy that the flow pattern of this high-frequency shear layer mode is similar to the observed unstable oscillations in supercritical unstable case. DNS of the cavity flow carried out at different Reynolds number from steady state until a nonlinear saturated state is obtained. The comparison of time histories of kinetic energy presents a clearly dominant energetic mode which shifts between low-frequency and highfrequency oscillation. A complete flow patterns from subcritical cases to supercritical case has been put in evidence. The flow structure at the supercritical case Re=1100 resembles typical wake-shedding instability oscillations with a lateral motion existed in the subcritical cases. Also, This flow pattern is similar to the observations in experiments. In order to validate the linear instability analysis results, the topology of the composite flow fields reconstructed by linear superposition of a three-dimensional base flow and its leading three-dimensional global eigenmodes has been studied. The instantaneous wall streamlines of those composited flows display distinguish influence region of each eigenmode. Attention has been focused on the leading high-frequency shear layer mode; the composite flow fields have been fully recognized with respect to the downstream wave shedding. The three-dimensional shear layer mode is shown to give rise to a typical wake-shedding instability with a lateral motions occurring downstream which is in good agreement with the experiment results. Moreover, the spanwise-periodic, open cavity with the same length to depth ratio has been also studied. The most unstable linear mode is different from the real three-dimensional cavity flow, because of the existence of the side walls. Structure sensitivity of the unstable global mode is analyzed in the flow control context. The adjoint-based sensitivity analysis has been employed to localized the receptivity region, where the flow is more sensible to momentum forcing and mass injection. Because of the non-normality of the linearized Navier-Stokes equations, the direct and adjoint field has a large spatial separation. The strongest sensitivity region is locate in the upstream lip of the three-dimensional cavity. This numerical finding is in agreement with experimental observations. Finally, a prototype of passive flow control strategy is applied.
Resumo:
Este trabajo presenta un método discreto para el cálculo de estabilidad hidrodinámica y análisis de sensibilidad a perturbaciones externas para ecuaciones diferenciales y en particular para las ecuaciones de Navier-Stokes compressible. Se utiliza una aproximación con variable compleja para obtener una precisión analítica en la evaluación de la matriz Jacobiana. Además, mapas de sensibilidad para la sensibilidad a las modificaciones del flujo de base y a una fuerza constante permiten identificar las regiones del campo fluido donde una modificacin (ej. fuerza puntual) tiene un efecto estabilizador del flujo. Se presentan cuatro casos de prueba: (1) un caso analítico para comprobar la derivación discreta, (2) una cavidad cerrada a bajo Reynolds para mostrar la mayor precisión en el cálculo de los valores propios con la aproximación de paso complejo, (3) flujo 2D en un cilindro circular para validar la metodología, y (4) flujo en un cavidad abierta, presentado para validar el método en casos de inestabilidades convectivamente inestables. Los tres últimos casos mencionados (2-4) se resolvieron con las ecuaciones de Navier-Stokes compresibles, utilizando un método Discontinuous Galerkin Spectral Element Method. Se obtuvo una buena concordancia para el caso de validación (3), cuando se comparó el nuevo método con resultados de la literatura. Además, este trabajo muestra que para el cálculo de los modos propios directos y adjuntos, así como para los mapas de sensibilidad, el uso de variables complejas es de suprema importancia para obtener una predicción precisa. El método descrito es aplicado al análisis para la estabilización de la estela generada por un disco actuador, que representa un modelo sencillo para hélices, rotores de helicópteros o turbinas eólicas. Se explora la primera bifurcación del flujo para un disco actuador, y se sugiere que está asociada a una inestabilidad de tipo Kelvin-Helmholtz, cuya estabilidad se controla con en el número de Reynolds y en la resistencia del disco actuador (o fuerza resistente). En primer lugar, se verifica que la disminución de la resistencia del disco tiene un efecto estabilizador parecido a una disminución del Reynolds. En segundo lugar, el análisis hidrodinmico discreto identifica dos regiones para la colocación de una fuerza puntual que controle las inestabilidades, una cerca del disco y otra en una zona aguas abajo. En tercer lugar, se muestra que la inclusión de un forzamiento localizado cerca del actuador produce una estabilización más eficiente que al forzar aguas abajo. El análisis de los campos de flujo controlados confirma que modificando el gradiente de velocidad cerca del actuador es más eficiente para estabilizar la estela. Estos resultados podrían proporcionar nuevas directrices para la estabilización de la estela de turbinas de viento o de marea cuando estén instaladas en un parque eólico y minimizar las interacciones no estacionarias entre turbinas. ABSTRACT A discrete framework for computing the global stability and sensitivity analysis to external perturbations for any set of partial differential equations is presented. In particular, a complex-step approximation is used to achieve near analytical accuracy for the evaluation of the Jacobian matrix. Sensitivity maps for the sensitivity to base flow modifications and to a steady force are computed to identify regions of the flow field where an input could have a stabilising effect. Four test cases are presented: (1) an analytical test case to prove the theory of the discrete framework, (2) a lid-driven cavity at low Reynolds case to show the improved accuracy in the calculation of the eigenvalues when using the complex-step approximation, (3) the 2D flow past a circular cylinder at just below the critical Reynolds number is used to validate the methodology, and finally, (4) the flow past an open cavity is presented to give an example of the discrete method applied to a convectively unstable case. The latter three (2–4) of the aforementioned cases were solved with the 2D compressible Navier–Stokes equations using a Discontinuous Galerkin Spectral Element Method. Good agreement was obtained for the validation test case, (3), with appropriate results in the literature. Furthermore, it is shown that for the calculation of the direct and adjoint eigenmodes and their sensitivity maps to external perturbations, the use of complex variables is paramount for obtaining an accurate prediction. An analysis for stabilising the wake past an actuator disc, which represents a simple model for propellers, helicopter rotors or wind turbines is also presented. We explore the first flow bifurcation for an actuator disc and it suggests that it is associated to a Kelvin- Helmholtz type instability whose stability relies on the Reynolds number and the flow resistance applied through the disc (or actuator forcing). First, we report that decreasing the disc resistance has a similar stabilising effect to an decrease in the Reynolds number. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the disc and one far downstream where the instability originates. Third, we show that adding a localised forcing close to the actuator provides more stabilisation that forcing far downstream. The analysis of the controlled flow fields, confirms that modifying the velocity gradient close to the actuator is more efficient to stabilise the wake than controlling the sheared flow far downstream. An interesting application of these results is to provide guidelines for stabilising the wake of wind or tidal turbines when placed in an energy farm to minimise unsteady interactions.
Resumo:
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z_2 symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
Resumo:
Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no consensus on an accurate and general simulation methodology. Most prior numerical work has imposed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may be history dependent and, thus, any single mathematical function is inappropriate. Given these limitations, the present work has two primary goals: 1) create a numerical framework that allows the contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and numerical methods such that contact-line simulations may be performed on coarse computational meshes.
Fluid flows affected by contact lines are dominated by capillary stresses and require accurate curvature calculations. The level set method was chosen to track the fluid interfaces because it is easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers from an ill-posed mathematical problem at contact lines: a ``blind spot'' exists. Standard techniques to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reinitialization is proposed to remove these spurious velocity currents and its concept is further explored with level-set extension velocities.
To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity boundary condition and a fixed contact angle, are implemented in direct numerical simulations (DNS). DNS are found to converge only if the slip length is well resolved by the computational mesh. Unfortunately, since the slip length is often very small compared to fluid structures, these simulations are not computationally feasible for large systems. To address the second goal, a new methodology is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms, an average curvature and a viscous shear VS, are proposed to represent the missing microscale physics on a coarse mesh.
All of these components are then combined into a single framework and tested for a water droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of the contact diameter in time between the experimental measurements and the numerical simulation. Such comparison would not be possible with prior methods, since the Reynolds number Re and capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio is well outside of the range currently achievable by DNS. This framework is a promising first step towards simulating complex physics in capillary-dominated flows at a reasonable computational expense.
Resumo:
degli elementi vegetali nella dinamica e nella dispersione degli inquinanti nello street canyon urbano. In particolare, è stato analizzata la risposta fluidodinamica di cespugli con altezze diverse e di alberi con porosità e altezza del tronco varianti. Il modello analizzato consiste in due edifici di altezza e larghezza pari ad H e lunghezza di 10H, tra i quali corre una strada in cui sono stati modellizati una sorgente rappresentativa del traffico veicolare e, ai lati, due linee di componenti vegetali. Le simulazioni sono state fatte con ANSYS Fluent, un software di "Computational Fluid Dynamics"(CFD) che ha permesso di modellizare la dinamica dei flussi e di simulare le concentrazioni emesse dalla sorgente di CO posta lungo la strada. Per la simulazione è stato impiegato un modello RANS a chiusura k-epsilon, che permette di parametrizzare i momenti secondi nell'equazione di Navier Stokes per permettere una loro più facile risoluzione. I risultati sono stati espressi in termini di profili di velocità e concentrazione molare di CO, unitamente al calcolo della exchange velocity per quantificare gli scambi tra lo street canyon e l'esterno. Per quanto riguarda l'influenza dell'altezza dei tronchi è stata riscontrata una tendenza non lineare tra di essi e la exchange velocity. Analizzando invece la altezza dei cespugli è stato visto che all'aumentare della loro altezza esiste una relazione univoca con l'abbassamento della exchange velocity. Infine, andando a variare la permeabilità delle chiome degli alberi è stata trovatta una variazione non monotonica che correla la exchange velocity con il parametro C_2, che è stata interpretata attraverso i diversi andamenti dei profili sopravento e sottovento. In conclusione, allo stadio attuale della ricerca presentata in questa tesi, non è ancora possibile correlare direttamente la exchange velocity con alcun parametro analizzato.
Resumo:
In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method. © Springer 2005.
Resumo:
In this work an iterative strategy is developed to tackle the problem of coupling dimensionally-heterogeneous models in the context of fluid mechanics. The procedure proposed here makes use of a reinterpretation of the original problem as a nonlinear interface problem for which classical nonlinear solvers can be applied. Strong coupling of the partitions is achieved while dealing with different codes for each partition, each code in black-box mode. The main application for which this procedure is envisaged arises when modeling hydraulic networks in which complex and simple subsystems are treated using detailed and simplified models, correspondingly. The potentialities and the performance of the strategy are assessed through several examples involving transient flows and complex network configurations.
Resumo:
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high-order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier-Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity-velocity formulation for a two-dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high-order compact and non-compact finite-differences from fourth-order to sixth-order of accuracy. The other scheme used spectral methods instead of finite-difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed-order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The flow field and the energy transport near thermoacoustic couples are simulated using a 2D full Navier-Stokes solver. The thermoacoustic couple plate is maintained at a constant temperature; plate lengths, which are short and long compared with the particle displacement lengths of the acoustic standing waves, are tested. Also investigated are the effects of plate spacing and the amplitude of the standing wave. Results are examined in the form of energy vectors, particle paths, and overall entropy generation rates. These show that a net heat-pumping effect appears only near the edges of thermoacoustic couple plates, within about a particle displacement distance from the ends. A heat-pumping effect can be seen even on the shortest plates tested when the plate spacing exceeds the thermal penetration depth. It is observed that energy dissipation near the plate increases quadratically as the plate spacing is reduced. The results also indicate that there may be a larger scale vortical motion outside the plates which disappears as the plate spacing is reduced. (C) 2002 Acoustical Society of America.