994 resultados para RADIATION SENSOR
Resumo:
A sensing device for a touchless, hand gesture, user interface based on an inexpensive passive infrared pyroelectric detector array is presented. The 2 x 2 element sensor responds to changing infrared radiation generated by hand movement over the array. The sensing range is from a few millimetres to tens of centimetres. The low power consumption (< 50 μW) enables the sensor’s use in mobile devices and in low energy applications. Detection rates of 77% have been demonstrated using a prototype system that differentiates the four main hand motion trajectories – up, down, left and right. This device allows greater non-contact control capability without an increase in size, cost or power consumption over existing on/off devices.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, Programa de Pós-Graduação Stricto Sensu em Geociências Aplicadas, 2016.
Resumo:
Atmospheric scattering plays a crucial rule in degrading the performance of electro optical imaging systems operating in the visible and infra-red spectral bands, and hence limits the quality of the acquired images, either through reduction of contrast or increase of image blur. The exact nature of light scattering by atmospheric media is highly complex and depends on the types, orientations, sizes and distributions of particles constituting these media, as well as wavelengths, polarization states and directions of the propagating radiation. Here we follow the common approach for solving imaging and propagation problems by treating the propagating light through atmospheric media as composed of two main components: a direct (unscattered), and a scattered component. In this work we developed a detailed model of the effects of absorption and scattering by haze and fog atmospheric aerosols on the optical radiation propagating from the object plane to an imaging system, based on the classical theory of EM scattering. This detailed model is then used to compute the average point spread function (PSF) of an imaging system which properly accounts for the effects of the diffraction, scattering, and the appropriate optical power level of both the direct and the scattered radiation arriving at the pupil of the imaging system. Also, the calculated PSF, properly weighted for the energy contributions of the direct and scattered components is used, in combination with a radiometric model, to estimate the average number of the direct and scattered photons detected at the sensor plane, which are then used to calculate the image spectrum signal to- noise ratio (SNR) in the visible near infra-red (NIR) and mid infra-red (MIR) spectral wavelength bands. Reconstruction of images degraded by atmospheric scattering and measurement noise is then performed, up to the limit imposed by the noise effective cutoff spatial frequency of the image spectrum SNR. Key results of this research are as follows: A mathematical model based on Mie scattering theory for how scattering from aerosols affects the overall point spread function (PSF) of an imaging system was developed, coded in MATLAB, and demonstrated. This model along with radiometric theory was used to predict the limiting resolution of an imaging system as a function of the optics, scattering environment, and measurement noise. Finally, image reconstruction algorithms were developed and demonstrated which mitigate the effects of scattering-induced blurring to within the limits imposed by noise.
Resumo:
The finite element and boundary element methods are employed in this study to investigate the sound radiation characteristics of a box-type structure. It has been shown [T.R. Lin, J. Pan, Vibration characteristics of a box-type structure, Journal of Vibration and Acoustics, Transactions of ASME 131 (2009) 031004-1–031004-9] that modes of natural vibration of a box-type structure can be classified into six groups according to the symmetry properties of the three panel pairs forming the box. In this paper, we demonstrate that such properties also reveal information about sound radiation effectiveness of each group of modes. The changes of radiation efficiencies and directivity patterns with the wavenumber ratio (the ratio between the acoustic and the plate bending wavenumbers) are examined for typical modes from each group. Similar characteristics of modal radiation efficiencies between a box structure and a corresponding simply supported panel are observed. The change of sound radiation patterns as a function of the wavenumber ratio is also illustrated. It is found that the sound radiation directivity of each box mode can be correlated to that of elementary sound sources (monopole, dipole, etc.) at frequencies well below the critical frequency of the plates of the box. The sound radiation pattern on the box surface also closely related to the vibration amplitude distribution of the box structure at frequencies above the critical frequency. In the medium frequency range, the radiated sound field is dominated by the edge vibration pattern of the box. The radiation efficiency of all box modes reaches a peak at frequencies above the critical frequency, and gradually approaches unity at higher frequencies.
Resumo:
Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
In Australia, the Queensland fruit fly (B. tryoni), is the most destructive insect pest of horticulture, attacking nearly all fruit and vegetable crops. This project has researched and prototyped a system for monitoring fruit flies so that authorities can be alerted when a fly enters a crop in a more efficient manner than is currently used. This paper presents the idea of our sensor platform design as well as the fruit fly detection and recognition algorithm by using machine vision techniques. Our experiments showed that the designed trap and sensor platform is capable to capture quality fly images, the invasive flies can be successfully detected and the average precision of the Queensland fruit fly recognition is 80% from our experiment.
Resumo:
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.