940 resultados para RADIAL-DISTRIBUTION SYSTEMS
Resumo:
Mode of access: Internet.
Resumo:
Shipping list no.: 91-280-P.
Resumo:
Over recent years, hub-and-spoke distribution techniques have attracted widespread research attention. Despite there being a growing body of literature in this area there is less focus on the spoke-terminal element of the hub-and-spoke system as being a key component in the overall service received by the end-user. Current literature is highly geared towards discussing bulk optimization of freight units rather than to the more discrete and individualistic profile characteristics of shared-user Less-than-truckload (LTL) freight. In this paper, a literature review is presented to review the role hub-and-spoke systems play in meeting multi-profile customer demands, particularly in developing sectors with more sophisticated needs, such as retail. The paper also looks at the use of simulation technology as a suitable tool for analyzing spoke-terminal operations within developing hub-and spoke systems.
Resumo:
Purpose – The purpose of this paper is to investigate the “last mile” delivery link between a hub and spoke distribution system and its customers. The proportion of retail, as opposed to non-retail (trade) customers using this type of distribution system has been growing in the UK. The paper shows the applicability of simulation to demonstrate changes in overall delivery policy to these customers. Design/methodology/approach – A case-based research method was chosen with the aim to provide an exemplar of practice and test the proposition that simulation can be used as a tool to investigate changes in delivery policy. Findings – The results indicate the potential improvement in delivery performance, specifically in meeting timed delivery performance, that could be made by having separate retail and non-retail delivery runs from the spoke terminal to the customer. Research limitations/implications – The simulation study does not attempt to generate a vehicle routing schedule but demonstrates the effects of a change on delivery performance when comparing delivery policies. Practical implications – Scheduling and spreadsheet software are widely used and provide useful assistance in the design of delivery runs and the allocation of staff to those delivery runs. This paper demonstrates to managers the usefulness of investigating the efficacy of current design rules and presents simulation as a suitable tool for this analysis. Originality/value – A simulation model is used in a novel application to test a change in delivery policy in response to a changing delivery profile of increased retail deliveries.
A simulation analysis of spoke-terminals operating in LTL Hub-and-Spoke freight distribution systems
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT The research presented in this thesis is concerned with Discrete-Event Simulation (DES) modelling as a method to facilitate logistical policy development within the UK Less-than-Truckload (LTL) freight distribution sector which has been typified by “Pallet Networks” operating on a hub-and-spoke philosophy. Current literature relating to LTL hub-and-spoke and cross-dock freight distribution systems traditionally examines a variety of network and hub design configurations. Each is consistent with classical notions of creating process efficiency, improving productivity, reducing costs and generally creating economies of scale through notions of bulk optimisation. Whilst there is a growing abundance of papers discussing both the network design and hub operational components mentioned above, there is a shortcoming in the overall analysis when it comes to discussing the “spoke-terminal” of hub-and-spoke freight distribution systems and their capabilities for handling the diverse and discrete customer profiles of freight that multi-user LTL hub-and-spoke networks typically handle over the “last-mile” of the delivery, in particular, a mix of retail and non-retail customers. A simulation study is undertaken to investigate the impact on operational performance when the current combined spoke-terminal delivery tours are separated by ‘profile-type’ (i.e. retail or nonretail). The results indicate that a potential improvement in delivery performance can be made by separating retail and non-retail delivery runs at the spoke-terminal and that dedicated retail and non-retail delivery tours could be adopted in order to improve customer delivery requirements and adapt hub-deployed policies. The study also leverages key operator experiences to highlight the main practical implementation challenges when integrating the observed simulation results into the real-world. The study concludes that DES be harnessed as an enabling device to develop a ‘guide policy’. This policy needs to be flexible and should be applied in stages, taking into account the growing retail-exposure.
Resumo:
The system grounding method option has a direct influence on the overall performance of the entire medium voltage network as well as on the ground fault current magnitude. For any kind of grounding systems: ungrounded system, solidly and low impedance grounded and resonant grounded, we can find advantages and disadvantages. A thorough study is necessary to choose the most appropriate grounding protection system. The power distribution utilities justify their choices based on economic and technical criteria, according to the specific characteristics of each distribution network. In this paper we present a medium voltage Portuguese substation case study and a study of neutral system with Petersen coil, isolated neutral and impedance grounded.
Resumo:
Pressure management (PM) is commonly used in water distribution systems (WDSs). In the last decade, a strategic objective in the field has been the development of new scientific and technical methods for its implementation. However, due to a lack of systematic analysis of the results obtained in practical cases, progress has not always been reflected in practical actions. To address this problem, this paper provides a comprehensive analysis of the most innovative issues related to PM. The methodology proposed is based on a case-study comparison of qualitative concepts that involves published work from 140 sources. The results include a qualitative analysis covering four aspects: (1) the objectives yielded by PM; (2) types of regulation, including advanced control systems through electronic controllers; (3) new methods for designing districts; and (4) development of optimization models associated with PM. The evolution of the aforementioned four aspects is examined and discussed. Conclusions regarding the current status of each factor are drawn and proposals for future research outlined
Resumo:
Using robotic systems for many missions that require power distribution can decrease the need for human intervention in such missions significantly. For accomplishing this capability a robotic system capable of autonomous navigation, power systems adaptation, and establishing physical connection needs to be developed. This thesis presents developed path planning and navigation algorithms for an autonomous ground power distribution system. In this work, a survey on existing path planning methods along with two developed algorithms by author is presented. One of these algorithms is a simple path planner suitable for implementation on lab-size platforms. A navigation hierarchy is developed for experimental validation of the path planner and proof of concept for autonomous ground power distribution system in lab environment. The second algorithm is a robust path planner developed for real-size implementation based on lessons learned from lab-size experiments. The simulation results illustrates that the algorithm is efficient and reliable in unknown environments. Future plans for developing intelligent power electronics and integrating them with robotic systems is presented. The ultimate goal is to create a power distribution system capable of regulating power flow at a desired voltage and frequency adaptable to load demands.
Resumo:
Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.
Resumo:
Water Distribution Networks (WDNs) play a vital importance rule in communities, ensuring well-being band supporting economic growth and productivity. The need for greater investment requires design choices will impact on the efficiency of management in the coming decades. This thesis proposes an algorithmic approach to address two related problems:(i) identify the fundamental asset of large WDNs in terms of main infrastructure;(ii) sectorize large WDNs into isolated sectors in order to respect the minimum service to be guaranteed to users. Two methodologies have been developed to meet these objectives and subsequently they were integrated to guarantee an overall process which allows to optimize the sectorized configuration of WDN taking into account the needs to integrated in a global vision the two problems (i) and (ii). With regards to the problem (i), the methodology developed introduces the concept of primary network to give an answer with a dual approach, of connecting main nodes of WDN in terms of hydraulic infrastructures (reservoirs, tanks, pumps stations) and identifying hypothetical paths with the minimal energy losses. This primary network thus identified can be used as an initial basis to design the sectors. The sectorization problem (ii) has been faced using optimization techniques by the development of a new dedicated Tabu Search algorithm able to deal with real case studies of WDNs. For this reason, three new large WDNs models have been developed in order to test the capabilities of the algorithm on different and complex real cases. The developed methodology also allows to automatically identify the deficient parts of the primary network and dynamically includes new edges in order to support a sectorized configuration of the WDN. The application of the overall algorithm to the new real case studies and to others from literature has given applicable solutions even in specific complex situations.
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS