140 resultados para RADIACION IONIZANTE
Resumo:
The treatment of a tumor with ionizing radiation is an ongoing process with well differentiated stages. These ones include the tumor diagnosis and location, the decision on the treatment strategy, the absorbed dose planning and calculation, the treatment administration, the absorbed dose verification and the evaluation of results in short and long terms. The quality of a radiotherapy procedure is closely linked to factors that may be classified as clinical, such as the diagnosis, the tumor location, the treatment strategy chosen and the continuous treatment reassessment; dosimetric or physical, such as the uncertainty in the dose calculation, its optimization and verification, the suitability of the equipment to provide a radiation beam consistent with the treatment planning; finally, others which are related to the practical application of radiotherapy treatment and the handling of the patient. In order to analyze the radiotherapy quality, one should realize that the three aspects (medical, physical or dosimetric and practical application) should be considered in a combined way. This means that numerous actions of the radiotherapists, medical physicists and technicians in radiotherapy should be held jointly and their knowledge level will significantly affect the treatment quality. In this study, the main physical parameters used in dosimetry are defined as well as determined experimentally for a linear accelerator Mevatron - MXT. With this, it is intended to provide recommendations for the physical aspects of Quality Assurance (QA) in the radiotherapy treatments, and these will usually be applied by professionals in Medical Physics. In addition to these instructions, it is recommended that additional texts are prepared to address in detail the clinical aspects of the treatments QA
Resumo:
The Medical Physics has been developing very fast due to the progress of the technologies and to the increase of the concerns with cure of diseases. One of the Medical Physics main performances at the present time is the use of ionizing radiations for cancer treatment, especially, services as Radiotherapy. The radiotherapy technique uses ionizing radiation with therapeutic end of cancer controls, avoiding your proliferation and it worsens of the patient. For the treatment a radiation bunch is used, with rectangular form, that it passes through the different types of tissues of the patient's body, and depending on the attenuation and of the depth of the fabrics, a great amount of energy is deposited inside in different points of the body. Like this, to plan this treatment type it should be obtained the dimension of the distribution and dose absorption along the volume. For this, it is necessary in the planning of the treatment of the cancer for radiotherapy to build isodose curves, which are lines that represent points of same amount of dose to be deposited in the area to be treated. To aid the construction of the curves of form isodose to reach the best result in the planning of the treatment, in other words, a great planning, providing the maximum of dose in the tumor and saving the healthy and critical organs, it has been using mathematical tools and computational. A plan of cancer treatment for radiotherapy is considered great when all the parameters that involve the treatment, be them physical or biological, they were investigated and adapted individually for the patient. For that, is considered the type and the location of the tumor, worrying about the elimination of the cancer without damaging the healthy tissue of the treated area, mainly the risk organs, which are in general very sensitive to the radiations. This way, the optimization techniques... (Complete abstract click electronic access below)
Resumo:
Currently the mobile services represent an essential tool in daily life of the population. However, while offering greater convenience to its users, there is growing concern about the harmful effects to human health, derived from daily exposure of the public to electromagnetic fields from radio base stations (RBS), since even today, there is no study proving that longterm exposure to low-level fields are not harmful to health. In Presidente Prudente has not been a study reporting values of measurements of electromagnetic fields from base stations installed in the city. Based on these data, this study aimed to assess the levels of electromagnetic exposure in the city of Presidente Prudente regarding recommended by international bodies, as well as propose measures that can reduce public exposure to electromagnetic fields. For measuring values of electromagnetic fields, we used appliance Electromagnetic Field Meter Portable Digital - DRE-050, the Instrutherm, following the methodology suggested and adapted from the Adilza Condessa Dode’study. In total, 49 points were mapped corresponding to the areas at risk of exposure to electromagnetic fields generated by the substations of power grid, transmission towers and telecommunication towers located in the city of Presidente Prudente (SP)
Resumo:
The purpose of this work is to provide quality control requirements and security in dental x-rays in order to obtain good quality image which allows the correct diagnosis, which reduces the dose to the patient, mainly due to the repetition of tests, and decreasing cost. The requirements apply to related activities to quality control and procedures using ionizing radiation for diagnostic imaging in dentistry by evaluating a minimum set of parameters to be tested or verified. Quality control follows the Ordinance No. 453 of the Ministry of Health of 06.01.1998, SS Resolution No. 625 of 12.14.1994 and Resolution No. 64 of the Health Surveillance Center – Department of Health of Sao Paulo and National Health Surveillance Agency – Ministry of Health of Brazil. This study was conducted in the city of Marilia, Sao Paulo, along with the Company P&R Consulting and Medical Physics, in a dental clinic of the University UNIMAR in the x-ray equipment used on that site. The physical parameters of the device were tested with the aid of ionization chambers to measure rates of radiation, electrometer to measure rates of time, kV and doses, radiographic films and positioning devices. Finally, this work demonstrates the need and importance of quality control, which one ensures the proper use of x-ray machines, maintaining efficiency and at the same time it reduces the risks to the patient, to the dentist and to the general public
Resumo:
A Dosímetria Termoluminescente (TLD) é uma ferramenta extremamente versátil para a avaliação da dose absorvida por tecidos humanos, devido à interação dos mesmos com a radiação ionizante. As características termoluminescentes (TL) do fluoreto de lítio (LiF) foram estudadas extensivamente primeiramente por apresentar número atômico muito próximo ao do tecido humano e, portanto, conseguir quantificar com fidelidade a radiação recebida na ordem de μGy (micro Gray) a kGy (kilo Gray) . Foram abordados os princípios físicos envolvido no procedimento de calibração e tratamento dos dosímetros (total de 224 pastilhas), os quais foram separados, após tratamento, em 75 grupos. Este trabalho foi de suma importância na aplicação dos conceitos físicos abordados durante a formação da graduação no curso de Bacharelado em Física Médica, e pode auxiliar em projetos, em andamento, junto ao grupo de pesquisa de Física Aplicada ao Radiodiagnóstico
Resumo:
Ao administrar um fármaco, devem ser considerados fatores como a forma farmacêutica apropriada, a via de administração com maior eficiência e o que será mais bem aceita pelo paciente. Formas farmacêuticas sólidas (FFS), tais como comprimidos, representam a principal escolha, pois são fáceis de preparar, armazenar, transportar e são bem aceitas pelos pacientes. Porém, a absorção dos fármacos administrados em comprimidos depende do processo de desintegração, ou seja, um processo tempo-dependente que ocorre sob a ação de um desintegrante que promove a fragmentação da forma farmacêutica em partículas passíveis de serem dissolvidas e absorvidas. Para uma liberação efetiva do ativo, uns dos critérios relacionados à formulação como a escolha dos excipientes e o tipo de revestimento devem ser considerados. O revestimento com polímeros é utilizado para melhorar a estabilidade do fármaco, mascarar sabor ou para promover a liberação em locais específicos de acordo com a variação do pH. A técnica considerada como “padrão ouro” para monitorar FFS no trato gastrintestinal do homem é a cintilografia, entretanto, métodos alternativos com base na detecção de campo magnético merecem destaque. A técnica de Biosusceptometria de Corrente Alternada (BAC) tem evoluído, apresentando como vantagem ser um método não-invasivo e livre de radiação ionizante. A BAC utiliza bobinas de indução para registrar a variação temporal do fluxo magnético a partir da resposta de um material magnético ingerido, aplicando-se um campo magnético alternado no meio biológico. O objetivo deste estudo é empregar a BAC para avaliar in vitro a influência de três diferentes polímeros de revestimento em diversos parâmetros farmacotécnicos e no processo de desintegração de comprimidos
Resumo:
The biomagnetic techniques use different magnetic field detectors to measure parameters of the human physiology. Those techniques present the advantage of being noninvasive and radiation free. Among them we can show up the Superconducting Quantum Interference Device (SQUID), the Current Alternate Biosusceptometry (ACB) and, more recently, the employment of anisotropic magnetoresistive sensors. Those magnetic sensors have a low cost and good sensitivity to measure different physiological parameters using magnetic markers. The biomagnetic techniques have being used successfully through study on the characteristics of the gastrointestinal tract. Recent research, the magnetoresistors were used to evaluate the transit time and localization of magnetic sources in different parts of the gastrointestinal tract. The objective of this work is the characterization, with in vitro tests, of a biomagnetic instrumentation using two 3-axis magnetoresistors arranged in a gradiometric coplanar setup to evaluate esophageal transit time, analyze and compare the results of experimental signals and the magnetic theory, as well as evaluate the instrumentation gain with use of tri-axial sensor front to the mono-axial sensor. The instrumentation is composed by two three-axis sensing magnetometers, precision power supply and amplifier electronic circuits. The sensors fixed in a coplanar setup were separate by distance of 18 cm. The sensitivity tests had been carried through using a cylindrical magnet (ø = 4 mm and h = 4 mm) of neodymium-iron-boron (grid 35). The tests were done moving the permanent magnet on the sensors parallel axis, simulating the food transit in... (Complete abstract click electronic access below)
Resumo:
The study of gastrointestinal tract (GIT) functions is necessary due to the increasing number of pathologies associated with it. Directly influencing the quality of life, the gastrointestinal tract provides a number of parameters that, when analyzed, allow us to describe its dysfunctions. Thus, many techniques can be combined to obtain these properties related to the GIT. However, these techniques are often invasive, require surgery, catheter insertion, or to build a temporal model of these functions, require the sacrifice of animals in a series of data collection. The technique used in this study has the advantage of having a low operating cost, being free of ionizing radiation, non-invasive and is known as biosusceptometry AC (BAC), used to evaluate the properties of the GI tract by monitoring the position and concentration of materials magnetically marked. The sensor consists of two pairs of coils, one reference and one for detection. A fixed base line separates the sensing and reference coils, and also functions as support for the instrumentation. It is also important to note that the detection coils are arranged in a first order (subtraction) gradiometric way. The objective of this study was to analyze the effects of gastrectomy in gastric emptying and gastrointestinal transit time of solid food in rats using a BAC system associated with magnetic markers. To realize this study was constructed a dedicated BAC sensor, built to analyze these GIT properties. Data acquisition was obtained by aligning the magnetic sensor with the stomach and colon of the animal at pre-determined intervals. Thus, when approaching the magnetic material of the sensor, the balance created between the two sides of the sensor is broken. This imbalance can be measured, digitized and acquired. Tracer was used as a ration magnetically marked with ferrite... (Complete abstract click electronic access below)
Resumo:
Magnetic resonance imaging (MRI), which is studied since 1938, is a technique used in medicine to produce high quality images from inside the human body. These images are produced non-invasively and without ionizing radiation. In addition, MRI is an extremely flexible technique, with which it is possible to produce images with different contrasts that provide different information about the anatomy, structure and function of the human body, and it is therefore one of the techniques preferred by radiologists. The phenomenon of MRI is based on the interaction of magnetic fields with the nuclear spins of the scanned sample. In this work a detailed study of the technique of magnetic resonance imaging is presented, with a description of the main features of the images produced by the technique and an analysis of its application to the fields of applications Neurology and Neuroscience
Resumo:
Along with the advance of technology, in terms of the expansion of medical exams that uses the ionizing radiation for diagnosis, there is also the concern about quality control for maintaining quality in radiographic imaging and for delivering low dose to the patient. Based on the Federal Order 453 of the Secretariat of Health Surveillance, which takes account of the practical and justification of individual medical exposures, the optimization of radiological protection, limitation of individual dose, and the prevention of accidents, were done through this paper radiodiagnostic tests on medical equipment in order to accept it or not, according to SVS-453. Along with the help and support of P&R Consulting and Medical Physics Marilia, SP, were made Quality Control and Radiometric Control in equipment from various cities across the state of São Paulo. The equipment discussed in this work is classified as conventional X-ray. According to the Federal Order SVS-453, the quality control in the program of quality assurance should include the following minimum set of constancy tests, with following minimum frequency: biennial tests for representative values of dose given to the patients of radiography and CT performed in the service; annual tests for accuracy of the indicator tube voltage (kVp), accuracy of exposure time, half-value layer, aligning the central axis of the beam of x-ray tube, performance (mGy / mA.min.m²), linearity of the rate of kerma on air with the mAs, reproducibility of the kerma on air rates, reproducibility of the automatic exposure, focal spot size, integrity of accessories and clothing for individual protection; semiannually for collimation system accuracy; weekly for temperature processing system and sensitometry processing system. For the room Radiometric Survey it was done a sketch...(Complete abstract click electronic access below)
Resumo:
After the discovery of ionizing radiation, its applications in various fields of science began to take significant proportions. In the case of medicine, there are the application areas in radiotherapy, diagnostic radiology and nuclear medicine. It was then necessary to create the field of radiological protection to establish the conditions necessary for the safe use of such ionizing radiation. Apply knowledge obtained during the graduation stage and in the practice of radiological protection in the areas of nuclear medicine and diagnostic radiology. In the area of nuclear medicine, tests were made in the Geiger-Muller counters (GM) and the dose calibrator (curiometer), the monitoring tests of radiation, waste management, clean of the Therapeutic room and testing the quality control of gamma-chambers. In the area of radiology, were performed tests of quality control equipment for conventional X-ray equipment and x-ray fluoroscopy, all following the rules of the National Health Surveillance Agency (ANVISA), and reporting of tests. The routine developed in the fields of nuclear medicine in hospitals has proved very useful, since the quality control of GM counters contribute to the values of possible contamination are more reliable. The control of dose calibrator enables the patient not to receive different doses of the recommended amounts, which prevents the repetition of tests and unnecessary exposure to radiation. The management of waste following the rules and laws established and required for its management. Tests for quality control of gamma chambers help to evaluate its medical performance through image. In part of diagnostic radiology, tests for quality control are performed in order to verify that the equipment is acceptable for usage or if repairs are needed. The knowledge acquired at the internship consolidated the learning of graduation course
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
This paper consists in the evaluation of the exposure rate to ionizing radiation to which professionals working in surgical procedures which require radiological examinations are subjected. Were initially performed real-time readings of exposure rate within four distinct operating rooms during the execution of four surgical procedures that made use of fluoroscopy equipment (including three orthopedic surgeries, one in the shoulder, one in the arm, another for deployment of metal pin in the leg region, and a fourth for vascular procedure); in these surgeries were used ionization chamber detector and an electrometer. In order to check the values achieved, was made a re-evaluation of the distribution of the rate of exposure to radiation, from the surgical procedures, now with thermoluminescent dosimeters (TLDs). For this, thirty TLDs were distributed in the operating rooms, arranged in points of interest as occupation by professionals. The TLDs were prepared for thirty consecutive days, after which they were removed and replaced with new dosimeters not exposed yet. The dosimeters were subjected to reading of the rate of exposure; this procedure was repeated for four months without interruption. The quantification of the results sought primarily to convert the rate of exposure for equivalent dose rate, both in measurements with ionization chamber as in measurements with TLDs, in order to highlight the presence of the biological effect of ionizing radiation for comparisons within scientific context. Then, the results were plotted to establish the relationship between the values of equivalent dose and the distance to the central axis of the x -ray source, confirming the inverse square law for distance. Finally, the values were associated with the maximum limit recommended by the legislation for occupationally exposed individuals. The methodology for the analysis and quantification of the data in this work aims at implementing a work plan that meets ...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB