979 resultados para Récepteurs Toll-like


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corioamnionite é definida como inflamação das membranas corioamnióticas, sendo que tal inflamação resulta geralmente de infecção bacteriana do líquido amniótico, das membranas fetais e da placenta. O sistema imune inato constitui a primeira linha de defesa do hospedeiro contra patógenos e nesse sentido os receptores Toll-like (TLR) são importantes reguladores dessa resposta inespecífica. Entretanto, a expressão desses receptores nas membranas corioamnióticas de gestações complicadas por corioamnionite não está bem estabelecida. Investigar a expressão de receptores Toll-like -2 e -4 em membranas corioamnióticas de gestações complicadas por corioamnionite. Foram incluídas no estudo 48 membranas corioamnióticas, coletadas no Serviço de Obstetrícia do Hospital das Clínicas da Faculdade de Medicina de Botucatu, UNESP, no período de janeiro a novembro de 2008, de gestações pré-termo e de termo, incluindo gestantes com rotura prematura de membranas pré-termo (RPM-PT), trabalho de parto pré-termo (TPP) além de gestações de termo (GT). Fragmentos das membranas corioamnióticas foram encaminhados à análise histopatológica para confirmação de corioamnionite histológica. Outros fragmentos de 1cm2 das membranas foram acondicionados em RNA later® e foram submetidos à extração de RNA total. Após a extração do RNA, as amostras com concentração entre 0,02 e 0,2μg/ μL de RNA foram submetidas à obtenção de cDNA para posterior utilização na quantificação da expressão de TRL-2 e TLR-4 pela técnica da PCR em tempo real empregando-se o sistema TaqMan® Gene Expression Assays. Dentre as 24 membranas corioamnióticas com presença de corioamnionite, 41,7% foram obtidas de... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Toll-like receptors (TLR) are membrane proteins that recognize conserved molecules derived from bacterial, viral, fungal or host tissues. They are responsible for promoting the production of cytokines and chemokines, increasing the expression of costimulatory molecules and influencing the T Helper response (Th) toward either a Th1 or Th2 profile, thereby modulating the regulatory T cell response and controlling the integrity of the epithelial barrier. The key factors responsible for increased susceptibility to recurrent aphthous ulceration (RAU) are unclear, and because TLRs are involved in both immune regulation and control of the epithelial barrier, a deficiency in TLR activity is likely to cause increased susceptibility. METHODS: We investigated the gene expression of TLRs one through 10 in tissue samples and peripheral blood mononuclear cells (PBMC) of RAU patients in comparison to healthy controls using real-time quantitative reverse transcription PCR. RESULTS: The analysis of mRNA expression levels in oral lesion showed significant (P < 0.01) overexpression of the TLR2(similar to 6-fold) gene and decreased expression of the TLR3 (similar to 5-fold) and TLR5 (similar to 6-fold) genes in comparison with healthy oral mucosa. The analysis of mRNA expression in PBMC indicated a down-regulation of TLR5 gene expression in the cells from RAU patients (P < 0.05; similar to 2-fold). CONCLUSION: Our results support the hypothesis that a subset of RAU patients has fewer TLR expression that have been tentatively implicated in antiinflammatory effects. This derangement of TLR gene expression may cause an overlay exuberant inflammation reaction in situations where normal individuals are resistant. J Oral Pathol Med (2012) 41: 8085

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In sepsis, toll-like receptor (TLR)-4 modulates the migration of neutrophils to infectious foci, favoring bacteremia and mortality. In experimental sepsis, organ dysfunction and cytokines released by activated macrophages can be reduced by gastrin-releasing peptide (GRP) receptor (GRPR) antagonist RC-3095. Here we report a link between GRPR and TLR-4 in experimental models and in sepsis patients. RAW 264.7 culture cells were exposed to lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-alpha and RC-3095 (10 ng/mL), Male Wistar rats were subjected to cecal ligation and puncture (CLP), and RC-3095 was administered (3 mg/kg, subcutaneously); after 6 h, we removed the blood, bronchoalveolar lavage, peritoneal lavage and lung. Human patients with a clinical diagnosis of sepsis received a continuous infusion with RC-3095 (3 mg/kg, intravenous) over a period of 12 h, and plasma was collected before and after RC-3095 administration and, in a different set of patients with systemic inflammatory response syndrome (SIRS) or sepsis. GRP plasma levels were determined. RC-3095 inhibited TLR-4, extracellular-signal-related kinase (ERK)-1/2, Jun NH2-terminal kinase (JNK) and Akt and decreased activation of activator protein 1 (AP-1), nuclear factor (NF)-kappa B and interleukin (IL)-6 in macrophages stimulated by LPS. It also decreased IL-6 release from macrophages stimulated by TNF-alpha. RC-3095 treatment in CLP rats decreased lung TLR-4, reduced the migration of cells to the lung and reduced systemic cytokines and bacterial dissemination. Patients with sepsis and systemic inflammatory response syndrome have elevated plasma levels of GRP which associates with clinical outcome in the sepsis patients. These findings highlight the role of GRPR signaling in sepsis outcome and the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving at least inhibition of TLR-4 signaling. Online address: http://www.molmed.org doi: 10.2119/molmed.2012.00083