963 resultados para Quantum computation
Resumo:
We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.
Resumo:
Chains of interacting non-Abelian anyons with local interactions invariant under the action of the Drinfeld double of the dihedral group D-3 are constructed. Formulated as a spin chain the Hamiltonians are generated from commuting transfer matrices of an integrable vertex model for periodic and braided as well as open boundaries. A different anyonic model with the same local Hamiltonian is obtained within the fusion path formulation. This model is shown to be related to an integrable fusion interaction round the face model. Bulk and surface properties of the anyon chain are computed from the Bethe equations for the spin chain. The low-energy effective theories and operator content of the models (in both the spin chain and fusion path formulation) are identified from analytical and numerical studies of the finite-size spectra. For all boundary conditions considered the continuum theory is found to be a product of two conformal field theories. Depending on the coupling constants the factors can be a Z(4) parafermion or a M-(5,M-6) minimal model.
Resumo:
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
Resumo:
A number of recent studies have investigated the introduction of decoherence in quantum walks and the resulting transition to classical random walks. Interestingly,it has been shown that algorithmic properties of quantum walks with decoherence such as the spreading rate are sometimes better than their purely quantum counterparts. Not only quantum walks with decoherence provide a generalization of quantum walks that naturally encompasses both the quantum and classical case, but they also give rise to new and different probability distribution. The application of quantum walks with decoherence to large graphs is limited by the necessity of evolving state vector whose sizes quadratic in the number of nodes of the graph, as opposed to the linear state vector of the purely quantum (or classical) case. In this technical report,we show how to use perturbation theory to reduce the computational complexity of evolving a continuous-time quantum walk subject to decoherence. More specifically, given a graph over n nodes, we show how to approximate the eigendecomposition of the n2×n2 Lindblad super-operator from the eigendecomposition of the n×n graph Hamiltonian.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
Resumo:
We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of Jozsa's axioms. The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.
Resumo:
We investigate in detail the effects of a QND vibrational number measurement made on single ions in a recently proposed measurement scheme for the vibrational state of a register of ions in a linear rf trap [C. D'HELON and G. J. MILBURN, Phys Rev. A 54, 5141 (1996)]. The performance of a measurement shows some interesting patterns which are closely related to searching.
Resumo:
We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.
Resumo:
We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD's) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schrodinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.
Resumo:
We present the conditional quantum dynamics of an electron tunneling between two quantum dots subject to a measurement using a low transparency point contact or tunnel junction. The double dot system forms a single qubit and the measurement corresponds to a continuous in time readout of the occupancy of the quantum dot. We illustrate the difference between conditional and unconditional dynamics of the qubit. The conditional dynamics is discussed in two regimes depending on the rate of tunneling through the point contact: quantum jumps, in which individual electron tunneling current events can be distinguished, and a diffusive dynamics in which individual events are ignored, and the time-averaged current is considered as a continuous diffusive variable. We include the effect of inefficient measurement and the influence of the relative phase between the two tunneling amplitudes of the double dot/point contact system.
Resumo:
We present some applications of high-efficiency quantum interrogation (interaction-free measurement) for the creation of entangled states of separate atoms and of separate photons. The quantum interrogation of a quantum object in a superposition of object-in and object-out leaves the object and probe in an entangled state. The probe can then be further entangled with other objects in subsequent quantum interrogations. By then projecting out those cases in which the probe is left in a particular final state, the quantum objects can themselves be left in various entangled states. In this way, we show how to generate two-, three-, and higher-qubit entanglement between atoms and between photons. The effect of finite efficiency for the quantum interrogation is delineated for the various schemes.
Resumo:
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance quantum-information processing. There are two limits where our quantum evolution coincides with the classical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion is incorporated.
Resumo:
The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution P-t(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t)similar tot, unlike the classical random walk for which sigma(t)similar toroott. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be Tsimilar toalpha(-2), where alpha is the standard deviation of the noise.
Resumo:
We introduce a refinement of the standard continuous variable teleportation measurement and displacement strategies. This refinement makes use of prior knowledge about the target state and the partial information carried by the classical channel when entanglement is nonmaximal. This gives an improvement in the output quality of the protocol. The strategies we introduce could be used in current continuous variable teleportation experiments.
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.