976 resultados para QUANTUM-THEORY
Resumo:
Experimental charge density distributions in two known conformational polymorphs (orange and yellow) of coumarin 314 dye are analyzed based on multipole modeling of X-ray diffraction data collected at 100 K. The experimental results are compared with the charge densities derived from multipole modeling of theoretical structure factors obtained from periodic quantum calculation with density functional theory (DFT) method and B3LYP/6-31G(d,p) level of theory. The presence of disorder at the carbonyl oxygen atom of ethoxycarbonyl group in the yellow form, which was not identified earlier, is addressed here. The investigationof intermolecular interactions, based on Hirshfeld surface analysis and topological properties via quantum theory of atoms in molecule and total electrostatic interaction energies, revealed significant differences between the polymorphs. The differences of electrostatic nature in these two polymorphic forms were unveiled via construction of three-dimensional deformation electrostatic potential maps plotted over the molecular surfaces. The lattice energies evaluated from ab initio calculations on the two polymorphic forms indicate that the yellow form is likely to be the most favorable thermodynamically. The dipole moments derived from experimental and theoretical charge densities and also from Lorentz tensor approach are compared with the single-molecule dipole moments. In each case, the differences of dipole moments between the polymorphs are identified.
Resumo:
Detailed investigation of the charge density distribution in concomitant polymorphs of 3-acetylcoumarin in terms of experimental and theoretical densities shows significant differences in the intermolecular features when analyzed based on the topological properties via the quantum theory of atoms in molecules. The two forms, triclinic and monoclinic (Form A and Form B), pack in the crystal lattice via weak C-H---O and C-H---pi interactions. Form A results in a head-to-head molecular stack, while Form B generates a head-to-tail stack. Form A crystallizes in PI (Z' = 2) and Form B crystallizes in P2(1)/n (Z = 1). The electron density maps of the polymorphs demonstrate the differences in the nature of the charge density distribution in general. The charges derived from experimental and theoretical analysis show significant differences with respect to the polymorphic forms. The molecular dipole moments differ significantly for the two forms. The lattice energies evaluated at the HF and DFT (B3LYP) methods with 6-31G** basis set for the two forms clearly suggest that Form A is the thermodynamically stable form as compared to Form B. Mapping of electrostatic potential over the molecular surface shows dominant variations in the electronegative region, which bring out the differences between the two forms.
Resumo:
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.
Resumo:
The topological and the electrostatic properties of the aspirin drug molecule were determined from high-resolution X-ray diffraction data at 90 K, and the corresponding results are compared with the theoretical calculations. The electron density at the bond critical point of all chemical bonds induding the intermolecular interactions of aspirin has been quantitatively described using Bader's quantum theory of ``Atoms in Molecules''. The electrostatic potential of the molecule emphasizes the preferable binding sites of the drug and the interaction features of the molecule, which are crucial for drug-receptor recognition. The topological analysis of hydrogen bonds reveals the strength of intermolecular interactions.
Resumo:
We report an experimental study of recently formulated entropic Leggett-Garg inequality (ELGI) by Usha Devi et al. Phys. Rev. A 87, 052103 (2013)]. This inequality places a bound on the statistical measurement outcomes of dynamical observables describing a macrorealistic system. Such a bound is not necessarily obeyed by quantum systems, and therefore provides an important way to distinguish quantumness from classical behavior. Here we study ELGI using a two-qubit nuclear magnetic resonance system. To perform the noninvasive measurements required for the ELGI study, we prepare the system qubit in a maximally mixed state as well as use the ``ideal negative result measurement'' procedure with the help of an ancilla qubit. The experimental results show a clear violation of ELGI by over four standard deviations. These results agree with the predictions of quantum theory. The violation of ELGI is attributed to the fact that certain joint probabilities are not legitimate in the quantum scenario, in the sense they do not reproduce all the marginal probabilities. Using a three-qubit system, we also demonstrate that three-time joint probabilities do not reproduce certain two-time marginal probabilities.
Resumo:
A systematic study of six tetracyclones has been carried out using experimental and theoretical charge density analysis. A three pronged approach based on quantum theory of atoms in molecules (QTAIM), nucleus independent chemical shifts (NICS) criterion, and source function (SF) contributions has been performed to establish the degree of antiaromaticity of the central five-membered ring in all the derivatives. Electrostatic potentials mapped on the isodensity surface show that electron withdrawing substituents turn both C and O atoms of the carbonyl group more electropositive while retaining the direction of polarity.
Resumo:
A comprehensive analysis of the crystal packing and the energetic features of a series of four biologically active molecules belonging to the family of substituted 4-(benzylideneamino)-3-(4-fluoro-3-phenoxyphenyl)-1H-1,2,4-triazole-5-(4 H)-thione derivatives have been performed based on the molecular conformation and the supramolecular packing. This involves the formation of a short centrosymmetric R-2(2)(8) NH...S supramolecular synthon in the solid state, including the presence of CH...S, CH...O, CH...N, CH...F, CH...Cl, CF...FC, CCl...ClC, and CH...pi intermolecular interactions along with pp stacking to evaluate the role of noncovalent interactions in the crystal. The presence of such synthons has a substantial contribution toward the interaction energy (-18 to -20 kcal/mol) as obtained from the PIXEL calculation, wherein the Coulombic and polarization contribution are more significant than the dispersion contribution. The geometrical characteristics of such synthons favor short distance, and the population of related molecules having these geometries is rare as has been obtained from the Cambridge Structural Database (CSD). Furthermore, their interaction energies have been compared with those present in our molecules in the solid state. The topological characteristics of the NH...S supramolecular synthon, in addition to related weak interactions, CH...N, CH...Cl, CF...FC, and CCl...ClC, have been estimated using the quantum theory of atoms in molecules (QTAIM). In addition, an analysis of the Hirshfeld surface and associated fingerprint plots of these four molecules also have provided a platform for the evaluation of the contribution of different atom...atom contacts, which contribute toward the packing of the molecules in solids.
Resumo:
The existence of three centered C=O...H(N)...X-C hydrogen bonds (H-bonds) involving organic fluorine and other halogens in diphenyloxamide derivatives has been explored by NMR spectroscopy and quantum theoretical studies. The three centered H-bond with the participation of a rotating CF3 group and the F...H-N intramolecular hydrogen bonds, a rare observation of its kind in organofluorine compounds, has been detected. It is also unambiguously established by a number of one and two dimensional NMR experiments, such as temperature perturbation, solvent titration, N-15-H-1 HSQC, and F-19-H-1 HOESY, and is also confirmed by theoretical calculations, such as quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and non-covalent interaction (NCI).
Resumo:
The rare examples of intramolecular hydrogen bonds (HB) of the type the N-H center dot center dot center dot F-C, detected in a low polarity solvent in the derivatives of hydrazides, by utilizing one and two-dimensional solution state multinuclear NMR techniques, are reported. The observation of through-space couplings, such as, (1h)J(FH), and (1h)J(FN), provides direct evidence for the existence of intra-molecular HB. Solvent induced perturbations and the variable temperature NMR experiments unambiguously establish the presence of intramolecular HB. The existence of multiple conformers in some of the investigated molecules is also revealed by two dimensional HOESY and N-15-H-1 HSQC experiments. The H-1 DOSY experimental results discard any possibility of self or cross dimerization of the molecules. The derived NMR experimental results are further substantiated by Density Function Theory (DFT) based Non Covalent Interaction (NCI), and Quantum Theory of Atom in Molecule (QTAIM) calculations. The NCI calculations served as a very sensitive tool for detection of non-covalent interactions and also confirm the presence of bifurcated HBs.
Resumo:
The rare occurrence of intramolecular hydrogen bonds (HBs) of the type N-H center dot center dot center dot F-C is detected in the derivatives of imides in a low polarity solvent by using multi-dimensional and multinuclear NMR experiments. The observation of (1h)J(FH), (2h)J(FN), and (2h)J(FF), where the spin magnetization is transmitted through space among the interacting NMR active nuclei, provided strong and unambiguous evidence for the existence of intra-molecular HBs. The variation in the chemical shifts of labile protons depending on physical conditions, such as the solvent dilution and the systematic alteration of temperature confirmed the presence of weak interactions through intramolecular HBs in all the investigated fluorine substituted molecules. The self or cross dimerization of molecules is unequivocally discarded by the analysis of the rates of diffusion obtained using pseudo-two dimensional DOSY experiments. The Density Function Theory (DFT) calculations based on the Quantum Theory of Atoms In Molecules (QTAIM) and Non Covalent Interaction (NCI), are in close agreement with the NMR experimental findings.
Resumo:
Bulk n-lnSb is investigated at a heterodyne detector for the submillimeter wavelength region. Two modes or operation are investigated: (1) the Rollin or hot electron bolometer mode (zero magnetic field), and (2) the Putley mode (quantizing magnetic field). The highlight of the thesis work is the pioneering demonstration or the Putley mode mixer at several frequencies. For example, a double-sideband system noise temperature of about 510K was obtained using a 812 GHz methanol laser for the local oscillator. This performance is at least a factor or 10 more sensitive than any other performance reported to date at the same frequency. In addition, the Putley mode mixer achieved system noise temperatures of 250K at 492 GHz and 350K at 625 GHz. The 492 GHz performance is about 50% better and the 625 GHz is about 100% better than previous best performances established by the Rollin-mode mixer. To achieve these results, it was necessary to design a totally new ultra-low noise, room-temperature preamp to handle the higher source impedance imposed by the Putley mode operation. This preamp has considerably less input capacitance than comparably noisy, ambient designs.
In addition to advancing receiver technology, this thesis also presents several novel results regarding the physics of n-lnSb at low temperatures. A Fourier transform spectrometer was constructed and used to measure the submillimeter wave absorption coefficient of relatively pure material at liquid helium temperatures and in zero magnetic field. Below 4.2K, the absorption coefficient was found to decrease with frequency much faster than predicted by Drudian theory. Much better agreement with experiment was obtained using a quantum theory based on inverse-Bremmstrahlung in a solid. Also the noise of the Rollin-mode detector at 4.2K was accurately measured and compared with theory. The power spectrum is found to be well fit by a recent theory of non- equilibrium noise due to Mather. Surprisingly, when biased for optimum detector performance, high purity lnSb cooled to liquid helium temperatures generates less noise than that predicted by simple non-equilibrium Johnson noise theory alone. This explains in part the excellent performance of the Rollin-mode detector in the millimeter wavelength region.
Again using the Fourier transform spectrometer, spectra are obtained of the responsivity and direct detection NEP as a function of magnetic field in the range 20-110 cm-1. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance frequency tor magnetic fields as low as 3 KG at bath temperatures of 2.0K. The spectra also display the well-known peak due to the cyclotron resonance of electrons bound to impurity states. The magnitude of responsivity at both peaks is roughly constant with magnet1c field and is comparable to the low frequency Rollin-mode response. The NEP at the peaks is found to be much better than previous values at the same frequency and comparable to the best long wavelength results previously reported. For example, a value NEP=4.5x10-13/Hz1/2 is measured at 4.2K, 6 KG and 40 cm-1. Study of the responsivity under conditions of impact ionization showed a dramatic disappearance of the impurity electron resonance while the conduction electron resonance remained constant. This observation offers the first concrete evidence that the mobility of an electron in the N=0 and N=1 Landau levels is different. Finally, these direct detection experiments indicate that the excellent heterodyne performance achieved at 812 GHz should be attainable up to frequencies of at least 1200 GHz.
Resumo:
It is shown that the locus of the f' + if '' plot in the complex plane, f' being determined from measured f '' by using the dispersion relation, looks like a semicircle very near the absorption edge of Ge. The semicircular locus is derived from a quantum theory of X-ray resonant scattering when there is a sharp isolated peak in f '' just above the K-absorption edge. Using the semicircular behavior, an approach is proposed to determine the anomalous scattering factors in a crystal by fitting known calculated values based on an isolated-atom model to a semicircular focus. The determined anomalous scattering factors f' show excellent agreement with the measured values just below the absorption edge. In addition, the phase determination of a crystal structure factor has been considered by using the semicircular behavior.
Resumo:
MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its -hole region while -electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al--electrons links as well as the interaction in the BH3-C2H2 complex. The triel--electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of Atoms in Molecules as well as the Natural Bond Orbitals approach are applied here to characterize the -hole--electrons interactions.
Resumo:
The establishment of conductive graphene-molecule-graphene junction is investigated through first-principles electronic structure calculations and quantum transport calculations. The junction consists of a conjugated molecule connecting two parallel graphene sheets. The effects of molecular electronic states, structure relaxation, and molecule-graphene contact on the conductance of the junction are explored. A conductance as large as 0.38 conductance quantum is found achievable with an appropriately oriented dithiophene bridge. This work elucidates the designing principles of promising nanoelectronic devices based on conductive graphene-molecule-graphene junctions.
Resumo:
Based on Pulay's direct inversion iterative subspace (DIIS) approach, we present a method to accelerate self-consistent field (SCF) convergence. In this method, the quadratic augmented Roothaan-Hall (ARH) energy function, proposed recently by Høst and co-workers [J. Chem. Phys. 129, 124106 (2008)], is used as the object of minimization for obtaining the linear coefficients of Fock matrices within DIIS. This differs from the traditional DIIS of Pulay, which uses an object function derived from the commutator of the density and Fock matrices. Our results show that the present algorithm, abbreviated ADIIS, is more robust and efficient than the energy-DIIS (EDIIS) approach. In particular, several examples demonstrate that the combination of ADIIS and DIIS ("ADIIS+DIIS") is highly reliable and efficient in accelerating SCF convergence.