996 resultados para Pyrite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high [SO4]2- reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. d34S values of pyrite are -33 per mil to -50 per mil. Below the sapropels d34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotopic-geochemical study revealed presence of mantle He (3He/4He up to 223x10**-8) in gases from mud volcanoes of Eastern Georgia. This fact confirms that the Middle Kura basin fill encloses an intrusive body previously distinguished from geophysical data. Wide variations of carbon isotopic composition d13C in CH4 and CO2 and chemical composition of gas and water at temporally constant 3He/4He ratio indicate their relation with crustal processes. Unusual direct correlations of 3He/4He ratio with concentrations of He and CH4 and 40Ar/36Ar ratio can be explained by generation of gas in the Cenozoic sequence of the Middle Kura basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic carbon-rich shales from localities in England, Italy, and Morocco, which formed during the Cenomanian-Turonian oceanic anoxic event (OAE), have been examined for their total organic carbon (TOC) values together with their carbon, nitrogen, and iron isotope ratios. Carbon isotope stratigraphy (d13Corg and d13Ccarb) allows accurate recognition of the strata that record the oceanic anoxic event, in some cases allowing characterization of isotopic species before, during, and after the OAE. Within the black shales formed during the OAE, relatively heavy nitrogen isotope ratios, which correlate positively with TOC, suggest nitrate reduction (leading ultimately to denitrification and/or anaerobic ammonium oxidation). Black shales deposited before the onset of the OAE in Italy have unusually low bulk d57Fe values, unlike those found in the black shale (Livello Bonarelli) deposited during the oceanic anoxic event itself: These latter conform to the Phanerozoic norm for organic-rich sediments. Pyrite formation in the pre-OAE black shales has apparently taken place via dissimilatory iron reduction (DIR), within the sediment, a suboxic process that causes an approximately -2 per mil fractionation between a lithogenic Fe(III)oxide source and Fe(II)aq. In contrast, bacterial sulfate reduction (BSR), at least partly in the water column, characterized the OAE itself and was accompanied by only minor iron isotope fractionation. This change in the manner of pyrite formation is reflected in a decrease in the average pyrite framboid diameter from ~10 to ~7 µm. The gradual, albeit irregular increase in Fe isotope values during the OAE, as recorded in the Italian section, is taken to demonstrate limited isotopic evolution of the dissolved iron pool, consequent upon ongoing water column precipitation of pyrite under euxinic conditions. Given that evidence exists for both nitrate and sulfate reduction during the OAE, it is evident that redox conditions in the water column were highly variable, in both time and space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sascha-Pelligrini low-sulphidation epithermal system is located on the western edge of the Deseado Massif, Santa Cruz Province, Argentina. Outcrop sampling has returned values of up to 160g/t gold and 796g/t silver, with Mirasol Resources and Coeur D.Alene Mines currently exploring the property. Detailed mapping of the volcanic stratigraphy has defined three units that comprise the middle Jurassic Chon Aike Formation and two units that comprise the upper Jurassic La Matilde Formation. The Chon Aike Formation consists of rhyodacite ignimbrites and tuffs, with the La Matilde Formation including rhyolite ash and lithic tuffs. The volcanic sequence is intruded by a large flow-banded rhyolite dome, with small, spatially restricted granodiorite dykes and sills cropping out across the study area. ASTER multispectral mineral mapping, combined with PIMA (Portable Infrared Mineral Analyser) and XRD (X-ray diffraction) analysis defines an alteration pattern that zones from laumontite-montmorillonite, to illite-pyritechlorite, followed by a quartz-illite-smectite-pyrite-adularia vein selvage. Supergene kaolinite and steam-heated acid-sulphate kaolinite-alunite-opal alteration horizons crop out along the Sascha Vein trend and Pelligrini respectively. Paragenetically, epithermal veining varies from chalcedonic to saccharoidal with minor bladed textures, colloform/crustiform-banded with visible electrum and acanthite, crustiform-banded grey chalcedonic to jasperoidal with fine pyrite, and crystalline comb quartz. Geothermometry of mineralised veins constrains formation temperatures from 174.8 to 205.1¡ÆC and correlates with the stability field for the interstratified illite-smectite vein selvage. Vein morphology, mineralogy and associated alteration are controlled by host rock rheology, permeability, and depth of the palaeo-water table. Mineralisation within ginguro banded veins resulted from fluctuating fluid pH associated with selenide-rich magmatic pulses, pressure release boiling and wall-rock silicate buffering. The study of the Sascha-Pelligrini epithermal system will form the basis for a deposit-specific model helping to clarify the current understanding of epithermal deposits, and may serve as a template for exploration of similar epithermal deposits throughout Santa Cruz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopy has been used to study selected mineral samples of the copiapite group. Copiapite (Fe2+Fe3+(SO4)6(OH)2 · 20H2O) is a secondary mineral formed through the oxidn. of pyrite. Minerals of the copiapite group have the general formula AFe4(SO4)6(OH)2 · 20H2O, where A has a + 2 charge and can be either magnesium, iron, copper, calcium and/or zinc. The formula can also be B2/3Fe4(SO4)6(OH)2 · 20H2O, where B has a + 3 charge and may be either aluminum or iron. For each mineral, two Raman bands are obsd. at around 992 and 1029 cm-1, assigned to the (SO4)2-ν1 sym. stretching mode. The observation of two bands provides evidence for the existence of two non-equiv. sulfate anions in the mineral structure. Three Raman bands at 1112, 1142 and 1161 cm-1 are obsd. in the Raman spectrum of copiapites, indicating a redn. of symmetry of the sulfate anion in the copiapite structure. This redn. in symmetry is supported by multiple bands in the ν2 and ν4(SO4)2- spectral regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid sulfate soils (ASS) are one of the stressor factors that cause many mangrove restoration projects to fail. Achieving successful rehabilitation in an ASS affected area requires an understanding of the geochemical conditions that influence the establishment and growth of mangrove seedlings. This study evaluated the effect of tidal inundation on geochemical conditions on sub layer to better understand their impacts on the density, establishment, and growth of mangrove seedlings. This study also examined the geochemical conditions under which mangrove seedlings can establish naturally, and/or be replanted in abandoned aquaculture ponds. The study area was in an area of abandoned aquaculture ponds situated in the Mare District, adjacent to Bone Bay, South Sulawesi, Indonesia.The pH, pHfox, redox potential, organic content, water soluble sulfate, SKCl, SPOS, and grain size of the soil from the sediment core at + 10 - 15 cm depth near roots were measured using. Pyrite analysis were conducted for the top and sub sediments. The density, establishment, and the relative root growth of Rhizophoraceae were also determined. Free tidal inundation at abandoned pond sites improved the sediment quality. The high density, establishment, and growth of mangrove seedlings were characterized by freely drained areas with a higher pH (field and oxidisable), lower organic content, and high proportion of silt/clay. Higher density and growth also correlated to reduced environments. Sulfur species did not influence the density, establishment, and growth of the seedlings directly. The supply of propagules from the mangrove stands, or access from good waterways were also important for seedlings to establish naturally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7–7.8 ppb Pd, 0.025–0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu–Au deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid sulfate soils (ASS) is a stress factor that is responsible for the failure of some mangrove restoration projects, including abandoned aquaculture ponds converted from mangrove ecosystems. Through experimental and field studies, this research provides a better understanding of the biogeochemistry of ASS disturbance and the response of mangrove seedlings (Rhizophoraceae) under high metal levels and acidic conditions. This study found that mangrove restorations under ASS disturbance can work but with lower numbers of survived seedlings. To prevent toxicity under high levels of metal, seedlings retained metals in their roots and sparingly distributed them into aerial parts with low mobility. The presence of high levels of potential acidity parameters would allow pyrite to oxidise, thus increasing metal levels and acidity, which in turn affected the survival and growth of the seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strain of Thiobacillus ferrooxidans was adapted to grow at higher concentrations of copper by single step culturing in the presence of 20 g/L (0.314 mol/L) cupric ions added to 9K medium. Exposure to copper results in change in the surface chemistry of the microorganism. The isoelectric point of the adapted strain (pI=4.7) was observed to be at a higher pH than that of the wild unadapted strain(pI=2.0). Compared to the wild strain, the copper adapted strain was found to be more hydrophobic and showed enhanced attachment efficiency to the pyrite mineral. The copper adsorption ability of the adapted strain was also found to be higher than that of the wild strain. Fourier transform infrared spectroscopy of adapted cells suggested that a proteinaceous new cell surface component is synthesized by the adapted strain. Treatment of adapted cells with proteinase-K, resulted in complete loss of tolerance to copper, reduction in copper adsorption and hydrophobicity of the adapted cells. These observations strongly suggest a role played by cell surface modifications of Thiobacillus ferrooxidans in imparting the copper tolerance to the cells and bioleaching of sulphide minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.