959 resultados para Purification of the Enzyme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent reports point out the importance of the complex GK-GKRP in controlling glucose and lipid homeostasis. Several GK mutations affect GKRP binding, resulting in permanent activation of the enzyme. We hypothesize that hepatic overexpression of a mutated form of GK, GKA456V, described in a patient with persistent hyperinsulinemic hypoglycemia of infancy (PHHI) and could provide a model to study the consequences of GK-GKRP deregulation in vivo. GKA456V was overexpressed in the liver of streptozotocin diabetic mice. Metabolite profiling in serum and liver extracts, together with changes in key components of glucose and lipid homeostasis, were analyzed and compared to GK wild-type transfected livers. Cell compartmentalization of the mutant but not the wild-type GK was clearly affected in vivo, demonstrating impaired GKRP regulation. GKA456V overexpression markedly reduced blood glucose in the absence of dyslipidemia, in contrast to wild-type GK-overexpressing mice. Evidence in glucose utilization did not correlate with increased glycogen nor lactate levels in the liver. PEPCK mRNA was not affected, whereas the mRNA for the catalytic subunit of glucose-6-phosphatase was upregulated ~4 folds in the liver of GKA456V-treated animals, suggesting that glucose cycling was stimulated. Our results provide new insights into the complex GK regulatory network and validate liver-specific GK activation as a strategy for diabetes therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient synthesis of the marine metabolite 3-bromoverongiaquinol (1) and the first total synthesis of 5-monobromocavernicolin (2), both isolated from the marine sponge Aplysina cavernicola, have been described based on the 1,2 addition of the lithium enolate of N,O-bistrimethylsilylacetamide (BSA, 4) to 1,4-benzoquinone (3). Bromination and purification of the crude product on silica gel chromatography provided 3-bromoverongiaquinol (1) in 50% overall yield. Under alkaline conditions, the crude product of the bromination reaction was converted to 5-monobromocavernicolin (2) in 20% yield which was also obtained in 13% yield (25% yield based on recovered starting material) from 3-bromoverongiaquinol (1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg) and fibrinogen (minimum coagulant dose = 4.2 µg) in vitro, and promotes defibrin(ogen)ation in vivo (minimum defibrin(ogen)ating dose = 1.0 µg). In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilm formed by Staphylococcus aureus is considered an important virulence trait in the pathogenesis of infections associated with implantable medical devices. Gene expression analyses are important strategies for determining the mechanisms involved in production and regulation of biofilm. Obtaining intact RNA preparations is the first and most critical step for these studies. In this article, we describe an optimized protocol for obtaining total RNA from sessile cells of S. aureus using the RNeasy Mini Kit. This method essentially consists of a few steps, as follows: 1) addition of acetone-ethanol to sessile cells, 2) lysis with lysostaphin at 37°C/10 min, 3) vigorous mixing, 4) three cycles of freezing and thawing, and 5) purification of the lysate in the RNeasy column. This simple pre-kit procedure yields high-quality total RNA from planktonic and sessile cells of S. aureus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of fungi associated with coffee fruits was verified regarding the chemical and physicochemical composition of Coffea arabica L. raw grains. The fruits were harvested at EPAMIG Experimental farm in Lavras, State of Minas Gerais - making up the different samples here analyzed. After processing and drying, the grains were incubated in wet chamber for fungal exteriorization through the blotter test method and submitted to the following analyses: polyphenoloxidase, total reducing and non-reducing sugars, clorogenic acid, titrable acidity, potassium leaching, electric conductivity and caffeine. The occurrence of the P. variable, P. rugulosum, P. funiculosum, F. equiseti, F. semitectum, A.alutaceus, A. niger and C. cladosporioides fungi in the different samples was detected. From the analysis of the results obtained, it was observed that the presence of the Aspergillus alutaceus fungus reduces the activity of the enzyme polyphenoloxidase and increases the values of potassium leaching, electric conductivity and chlorogenic acid. The incidence of the Cladosporium cladosporioides fungus influenced the average values of potassium leaching and electric conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial limits of the active site in the benzylic hydroxylase enzyme of the fungus Mortierella isabellina were investigated. Several molecular probes were used in incubation experiments to determine the acceptability of each compound by this enzyme. The yields of benzylic alcohols provided information on the acceptability of the particular compound into the active site, and the enantiomeric excess values provided information on the "fit" of acceptable substrates. Measurements of the molecular models were made using Cambridge Scientific Computing Inc. CSC Chem 3D Plus modeling program. i The dimensional limits of the aromatic binding pocket of the benzylic hydroxylase were tested using suitably substituted ethyl benzenes. Both the depth (para substituted substrates) and width (ortho and meta substituted substrates) of this region were investigated, with results demonstrating absolute spatial limits in both directions in the plane of the aromatic ring of 7.3 Angstroms for the depth and 7.1 Angstroms for the width. A minimum requirement for the height of this region has also been established at 6.2 Angstroms. The region containing the active oxygen species was also investigated, using a series of alkylphenylmethanes and fused ring systems in indan, 1,2,3,4-tetrahydronaphthalene and benzocycloheptene substrates. A maximum distance of 6.9 Angstroms (including the 1.5 Angstroms from the phenyl substituent to the active center of the heme prosthetic group of the enzyme) has been established extending directly in ii front of the aromatic binding pocket. The other dimensions in this region of the benzylic hydroxylase active site will require further investigation to establish maximum allowable values. An explanation of the stereochemical distributions in the obtained products has also been put forth that correlates well with the experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalase is the enzyme which decomposes hydrogen peroxide to water and oxygen. Escherichia coli contains two catalases. Hydroperoxidase I (HPI) is a bifunctional catalase-peroxidase. Hydroperoxidase II (HPII) is only catalytically active toward H202. Expression of the genes encoding these proteins is controlled by different regimes. HPJI is thought to be a hexamer, having one heme d cis group per enzymatic subunit. HPII wild type protein and heme containing mutant proteins were obtained from the laboratory of P. Loewen (Univ. of Manitoba). Mutants constructed by oligonucleotidedirected mutagenesis were targeted for replacement of either the His128 residue or the Asn201 residue in the vicinity of the HPII heme crevice. His128 is the residue thought to be analogous to the His74 distal axial ligand of the heme in the bovine liver enzyme, and Asn201 is believed to be a residue critical to the function of the enzyme because of its role in orienting and interacting with the substrate molecule. Investigation of the nature of the hemes via absorption spectroscopy of the unmodified catalase proteins and their derived pyridine hemochromes showed that while the bovine and Saccharomyces cerevisiae catalase enzymes are protoheme-containing, the HPII wild type protein contains heme d, and the mutant proteins contain either solely protoheme, or heme d-protoheme mixtures. Cyanide binding studies supported this, as ligand binding was monophasic for the bovine, Saccharomyces cerevisiae, and wild type HPII enzymes, but biphasic for several of the HPII mutant proteins. Several mammalian catalases, and at least two prokaryotic catalases, are known to be NADPH binding. The function of this cofactor appears to be the prevention of inactivation of the enzyme, which occurs via formation of the inactive secondary catalase peroxide compound (compound II). No physiologically plausible scheme has yet been proposed for the NADPH mediation of catalase activity. This study has shown, via fluorescence and affinity chromatography techniques, that NADPH binds to the T (Typical) and A (Atypical) catalases of Saccharomyces cerevisiae, and that wild type HPII apparently does not bind NADPH. This study has also shown that NADPH is unlike any other hydrogen donor to catalase, and addresses its features as a unique donor by proposing a mechanism whereby NADPH is oxidized and catalase is protected from inactivation via the formation of protein radical species. Migration of this radical to a position close to the NADPH is also proposed as an adjunct hypothesis, based on similar electron migrations that are known to occur within metmyoglobin and cytochrome c peroxidase when reacted with H202. Validation of these hypotheses may be obtained in appropriate future experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristic "foxy" aroma of Vilis labrusca Concord grapes is due in large part to methyl anthranilate, a volatile ester formed by the enzyme anthraniloyl- CoA:methanol anthraniloyltransferase (VIAMAT) of the superfamily of BARD acyltransferases. The publication of the genome ofthe closely related wine grape Vilis vinifera, which does not accumulate methyl anthranilate, permitted the searching for any putative VlAU4T-like genes, with the result of 5 highly homologous candidates being found, with one candidate sharing 95% identity to VlAU4T. Probing the gene expression of 18 different cultivars of V. vinifora ripe berries by RT -PCR showed that many varieties do indeed express VlAU4T-like genes. Subsequent cloning of the full-length open reading frame of one of these genes from eDNA prepared from the cultivar Sauvignon Blanc permitted preliminary biochemical characterization of the enzyme after heterologous expression in E. coli. It was determined that this alcohol acyltransferase (named VvsbAATl) catalyzes the formation of cis-3-hexenyl acetate, a "green-leaf' volatile. Although the cloned gene from Sauvignon Blanc had 95% identity at the amino acid level to VIAMAT, it displayed an altered substrate specificity and expression pattern. These results highlight the difficulty in predicting substrate specificity and function of enzymes through the basis of sequence homology, which is a common finding in the study of BARD acyltransferases. Also, the determination of function of VvsbAATl and other BARD acyltransferases in V. vinifera could be used as a genetic marker for certain aroma characteristics in grape breeding programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The levels and kinetic properties of arginase of the liver of s vertebrates : the fish otifg trhinea e)n, ztyhmee b ias thi(gPhteerro ipnu aslls tph.e), 3t hmeasmqumirarles lin(F cuonmampabruilsuosnp teon tnhaantt oi)f tahned p tohiek iglootahter(Cmaspra s(pC.)atalarec sattulad)i,edth. eT fhreo ga c(tRivaintya greater than that of the frog. The activity ; its activity in the fish is far in the bat and highest in the goat. in the bat is the same as in other mammals. The Km of the enzyme is lowest partially purified enzyme of vertebrates. significant difference in the inhibitory effect of glyoxylic acid on the partially purified enzyme of vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aims at the investigation of the 1ysico—chemical features of a tropical tidal river viz. we Muvattupuzha river. This river is expected to receive Jderate to heavy pollution loads in years to come, from we lone industrial unit, already set up on its bank. ilike other rivers, the geographical disposition of this Lver attains unique importance as regards its dynamics for 3) availability of natural runoff water from catchment :eas, which becomes very heavy during the monsoon season 3) regular steady availability of tail race water from a /dro—electric power station throughout the yearThe study also aims at arriving at the balancing forces of inherent self~purification of the river verses pollution loads from the factory effluents. The investigation period falls ahead of actual pollution occurrence and so the ambient conditions for a period of nearly one-and-a—half years were investigated, the analyses of which providflz to formulate the inter-relations of parameters varying with seasons. Tracer experiments were carried out which revealed the dispersion and dilution characteristics of the river in the vicinity of effluent outfall. The studv covers the trial—cum-capacity production periods of the factory during which effluents of various strength and quantity were discharged into the river; a few computed values arQ’cjmpgrQdl ... with the observed values. The base data along with the profiles of Oxygen sag equation have been utilized fb develop a mathematical model of the river with regard to its water quality

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of the Escherichia coli DNA T:G mismatch endonuclease (Vsr) has been investigated using oligodeoxynucleotides substituted, at the scissile phosphate, with isomeric phosphorothioates and a 3'-phosphorothiolate. Binding and kinetic data with the phosphorothioates/phosphorothiolate indicate that the two magnesium ions, which constitute essential co-factors, are required to stabilise the extra negative charge developed on the phosphate as the transition state is formed. Additionally one of the magnesium ions serves to activate the leaving group (the non-bridging 3'-oxygen atom of the scissile phosphate) during the hydrolysis reaction. Stereochemical analysis, using the R-p phosphorothioate isomer, indicates that Vsr carries out a hydrolytic reaction with inversion of stereochemistry at phosphorus, compatible with an in-line attack of water and a pentacovalent transition state with trigonal bipyramidal geometry. In conjunction with structures of Vsr bound to its products, these data allow the reconstruction of the enzyme-substrate complex and a comprehensive description of the hydrolysis mechanism. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Dermatosparaxis (Ehlers–Danlos syndrome in humans) is characterized by extreme fragility of the skin. It is due to the lack of mature collagen caused by a failure in the enzymatic processing of procollagen I. We investigated the condition in a commercial sheep flock. Hypothesis/Objectives Mutations in the ADAM metallopeptidase with thrombospondin type 1 motif, 2 (ADAMTS2) locus, are involved in the development of dermatosparaxis in humans, cattle and the dorper sheep breed; consequently, this locus was investigated in the flock. Animals A single affected lamb, its dam, the dam of a second affected lamb and the rams in the flock were studied. Methods DNA was purified from blood, PCR primers were used to detect parts of the ADAMS2 gene and nucleotide sequencing was performed using Sanger's procedure. Skin samples were examined using standard histology procedures. Results A missense mutation was identified in the catalytic domain of ADAMTS2. The mutation is predicted to cause the substitution in the mature ADAMTS2 of a valine molecule by a methionine molecule (V15M) affecting the catalytic domain of the enzyme. Both the ‘sorting intolerant from tolerant’ (SIFT) and the PolyPhen-2 methodologies predicted a damaging effect for the mutation. Three-dimensional modelling suggested that this mutation may alter the stability of the protein folding or distort the structure, causing the protein to malfunction. Conclusions and clinical importance Detection of the mutation responsible for the pathology allowed us to remove the heterozygote ram, thus preventing additional cases in the flock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arginase (L-arginine amidinohydrolase, E.C. 3.5.3.1) is a metalloenzyme that catalyses the hydrolysis Of L-arginine to L-ornithine and urea. In Leishmania spp., the biological role of the enzyme may be involved in modulating NO production upon macrophage infection. Previously, we cloned and characterized the arginase gene from Leishmania (Leishmania) amazonensis. In the present work, we successfully expressed the recombinant enzyme in E. coli and performed biochemical and biophysical characterization of both the native and recombinant enzymes. We obtained K-M and V-max. values of 23.9(+/- 0.96) mM and 192.3 mu mol/min mg protein (+/- 14.3), respectively, for the native enzyme. For the recombinant counterpart, K-M was 21.5(+/- 0.90) mM and V-max was 144.9(+/- 8.9) mu mol/min mg. Antibody against the recombinant protein confirmed a glycosomal cellular localization of the enzyme in promastigotes. Data from light scattering and small angle X-ray scattering showed that a trimeric state is the active form of the protein. We determined empirically that a manganese wash at room temperature is the best condition to purify active enzyme. The interaction of the recombinant protein with the immobilized nickel also allowed us to confirm the structural disposition of histidine at positions 3 and 324. The determined structural parameters provide substantial data to facilitate the search for selective inhibitors of parasitic sources of arginase, which could subsequently point to a candidate for leishmaniasis therapy. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 angstrom. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.