888 resultados para Pulpal sensitivity
Resumo:
Increasing train speeds is conceptually a simple and straight forward method to expand railway capacity, for example in comparison to other more extensive and elaborate alternatives. In this article an analytical capacity model has been investigated as a means of performing a sensitivity analysis of train speeds. The results of this sensitivity analysis can help improve the operation of this railway system and to help it cope with additional demands in the future. To test our approach a case study of the Rah Ahane Iran (RAI) national railway network has been selected. The absolute capacity levels for this railway network have been determined and the analysis shows that increasing trains speeds may not be entirely cost effective in all circumstances.
Resumo:
The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. Methods: In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. Results: When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. Conclusions: In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.
Resumo:
Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm5 until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm5) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm5. Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation.
Resumo:
This paper demonstrates the procedures for probabilistic assessment of a pesticide fate and transport model, PCPF-1, to elucidate the modeling uncertainty using the Monte Carlo technique. Sensitivity analyses are performed to investigate the influence of herbicide characteristics and related soil properties on model outputs using four popular rice herbicides: mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. Uncertainty quantification showed that the simulated concentrations in paddy water varied more than those of paddy soil. This tendency decreased as the simulation proceeded to a later period but remained important for herbicides having either high solubility or a high 1st-order dissolution rate. The sensitivity analysis indicated that PCPF-1 parameters requiring careful determination are primarily those involve with herbicide adsorption (the organic carbon content, the bulk density and the volumetric saturated water content), secondary parameters related with herbicide mass distribution between paddy water and soil (1st-order desorption and dissolution rates) and lastly, those involving herbicide degradations. © Pesticide Science Society of Japan.
Resumo:
Objective: To investigate measures aimed at defining the nutritional status of cystic fibrosis (CF) populations, this study compared standard anthropometric measurements and total body potassium (TBK) as indicators of malnutrition. Methods: Height, weight, and TBK measurements of 226 children with CF from Royal Children's Hospital, Brisbane, Australia, were analyzed. Z scores for height for age, weight for age, and weight for height were analyzed by means of the National Centre for Health Statistics reference. TBK was measured by means of whole body counting and compared with predicted TBK for age. Two criteria were evaluated with respect to malnutrition: (1) a z score < -2.0 and (2) a TBK for age <80% of predicted. Results: Males and females with CF had lower mean height-for-age and weight-for-age z scores than the National Centre for Health Statistics reference (P < .01), but mean weight-for-height z score was not significantly different. There were no significant gender differences. According to anthropometry, only 7.5% of this population were underweight and 7.6% were stunted. However, with TBK as an indicator of nutritional status, 29.9% of males and 22.0% of females were malnourished. Conclusion: There are large differences in the percentage of patients with CF identified as malnourished depending on whether anthropometry or body composition data are used as the nutritional indicator. At an individual level, weight-based indicators are not sensitive indicators of suboptimal nutritional status in CF, significantly underestimating the extent of malnutrition. Current recommendations in which anthropometry is used as the indicator of malnutrition in CF should be revised.
Resumo:
We report the ferroelectric and pyroelectric properties of the composite films of lithium tantalate (LT) nanoparticle in poly(vinylidene fluoride) PVDF matrix at different volume fractions of LT (f(LT) = 0.047, 0.09 and 0.17). For an applied electric field of 150 kV cm(-1) the nonvolatile polarization of the composite was observed to increase from 0.014 mu C cm(-2) at f(LT) = 0 to 2.06 mu C cm(-2) at f(LT) = 0.17. For f(LT) = 0.17, the composite films exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2P(r) = 4.13 mu C cm(-2)). Compared with pure poled PVDF the composite films also showed a factor of about five enhancement in the pyroelectric coefficient at f(LT) = 0.17. When used in energy detection mode the pyroelectric voltage sensitivity of the composite films was found to increase from 3.93 to 18.5 VJ(-1) with an increase in f(LT) from 0.0 to 0.17.
Resumo:
Androgen withdrawal is the only effective form of systemic therapy for men with advanced disease, producing symptomatic and/or objective response in 80% of patients. Unfortunately, androgen independent (AI) progression and death occurs within a few years in the majority of these cases (6). Prostate cancer is highly chemoresistant, with objective response rates of 10% and no demonstrated survival benefit (28). Hormone refractory prostate cancer (HRPC) is therefore the main obstacle to improving the survival and quality of life in patients with advanced disease, and novel therapeutic strategies that target the molecular basis of androgen and chemoresistance are required.
Resumo:
Experiments in spintronics necessarily involve the detection of spin polarization. The sensitivity of this detection becomes an important factor to consider when extending the low temperature studies on semiconductor spintronic devices to room temperature, where the spin signal is weaker. In pump-probe experiments, which optically inject and detect spins, the sensitivity is often improved by using a photoelastic modulator (PEM) for lock-in detection. However, spurious signals can arise if diode lasers are used as optical sources in such experiments, along with a PEM. In this work, we eliminated the spurious electromagnetic coupling of the PEM onto the probe diode laser, by the double modulation technique. We also developed a test for spurious modulated interference in the pump-probe signal, due to the PEM. Besides, an order of magnitude enhancement in the sensitivity of detection of spin polarization by Kerr rotation, to 3x10(-8) rad was obtained by using the concept of Allan variance to optimally average the time series data over a period of 416 s. With these improvements, we are able to experimentally demonstrate at room temperature, photoinduced steady-state spin polarization in bulk GaAs. Thus, the advances reported here facilitate the use of diode lasers with a PEM for sensitive pump-probe experiments. They also constitute a step toward detection of spin-injection in Si at room temperature.
Resumo:
Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.
Inverse Sensitivity Analysis of Singular Solutions of FRF matrix in Structural System Identification
Resumo:
The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.
Resumo:
To identify ‘melanoma-specific’ microRNAs (miRNAs) we used an unbiased microRNA profiling approach to comprehensively study cutaneous melanoma in relation to other solid malignancies, which revealed 233 differentially expressed (≥ 2 fold, p < 0.05) miRNAs. Among the top 20 most significantly different miRNAs was hsa-miR-514a-3p. miR-514a is a member of a cluster of miRNAs (miR-506-514) involved in initiating melanocyte transformation and promotion of melanoma growth. We found miR-514a was expressed in 38/55 (69%) melanoma cell lines but in only 1/34 (3%) other solid cancers. To identify miR-514a regulated targets we conducted a miR-514a-mRNA ‘pull-down’ experiment, which revealed hundreds of genes, including: CTNNB1, CDK2, MC1R, and NF1, previously associated with melanoma. NF1 was selected for functional validation because of its recent implication inacquired resistance to BRAFV600E-targeted therapy. Luciferase-reporter assays confirmed NF1 as a direct target of miR-514a and over-expression of miR-514a in melanoma cell lines inhibited NF1 expression, which correlated with increased survival of BRAFV600E cells treated with PLX4032. These data provide another mechanism for the dysregulation of the MAPK pathway which may contribute to the profound resistance associated with current RAF-targeted therapies.