985 resultados para Pterosauria Skull mechanics Feeding Evolution
Resumo:
A quaternionic version of Quantum Mechanics is constructed using the Schwinger's formulation based on measurements and a Variational Principle. Commutation relations and evolution equations are provided, and the results are compared with other formulations.
Resumo:
Ontogenetic shape changes in the skull of three species of the genus Caiman (C. latirostris, C. sclerops, and C. yacare) are compared by geometric morphometrics for three-dimensional configurations (the least-squares analysis). The technique for obtaining the landmark coordinates is a simplification of the algorithm for multidimensional scaling. The ontogenetic nonlinear shape changes are similar in the three species but occur in a lesser extent in C. latirostris. These seem to be correlated with functional changes in the skull. The uniform shape change corresponds to an elongation of the skull, dorsoventral flattening, and lateral compression in C. sclerops and C. yacare. There is some lateral broadening in C. latirostris. Differences in the ontogenetic processes probably cause the differences in diet observed between C. latirostris and the other two species. Neotenic evolution seems to have acted in the skull of C. latirostris, and a posterior amplification of the early divergence led to a repatterning of the shape ontogenetic trajectory in this species. (C) 1997 Wiley-Liss, Inc.
Resumo:
Most lizards feed on a variety of food items that may differ dramatically in their physical and behavioral characteristics. Several lizard families are known to feed upon hard-shelled prey (durophagy). Yet, specializations toward true molluscivory have been documented for only a few species. As snails are hard and brittle food items, it has been suggested that a specialized cranial morphology, high bite forces, and an adapted feeding strategy are important for such lizards. Here we compare head and skull morphology, bite forces, and feeding kinematics of a snail-crushing teiid lizard (Dracaena guianensis) with those in a closely related omnivorous species (Tupinambis merianae). Our data show that juvenile D. guianensis differ from T. merianae in having bigger heads and greater bite forces. Adults, however, do not differ in bite force. A comparison of feeding kinematics in adult Dracaena and Tupinambis revealed that Dracaena typically use more transport cycles, yet are more agile in manipulating snails. During transport, the tongue plays an important role in manipulating and expelling shell fragments before swallowing. Although Dracaena is slow, these animals are very effective in crushing and processing hard-shelled prey. J. Exp. Zool. 317A:371381, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Using the flexibility and constructive definition of the Schwinger bases, we developed different mapping procedures to enhance different aspects of the dynamics and of the symmetries of an extended version of the two-level Lipkin model. The classical limits of the dynamics are discussed in connection with the different mappings. Discrete Wigner functions are also calculated. © 1995.
Resumo:
We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.
Resumo:
The study of the contributions of different bones to the formation of the skeleton in birds is necessary: (1) to establish homologies in comparative anatomy; (2) to delimit each bone structure correctly, mainly in relation to the skull and mandible where the bones are fused to each other in adults; and (3) to standardize nomenclature in avian osteology. In this paper at least one young specimen belonging to each sub-family of Cuculidae was examined in order to identify each bone in terms of boundaries and contributions to skull and mandible formation. These cuckoos specimens were also compared with adults and young of turacos and hoatzin. The results show little variation of skull and jaw among the young cuckoos studied compared with the variations among adult specimens. However, it provides new suggestions for the boundaries and nomenclature of certain osseous structures in the skull and mandible of birds, specifically fissura zona flexoria craniofacialis, prominetia frontoparietalis, crista temporalis transversa, processus squamosalis, fossa laterosphenoidalis, tuberculum laterosphenoidale and processus retroangularis. This study also provides more reliable homologies for use in cladistic analysis and above all it contributes to the phylogenetic position of Cuculidae within Neognathae, specifically the skull formation suggest that turacos and hoatzin are more similar to each other than either is to the cuckoos. © 2005 Taylor & Francis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study documents one of the slowest feeding behaviors ever recorded for a muricid gastropod in one of the most biotically rigorous regions on the planet. In Pacific Panama, Vitularia salebrosa attacks mollusks by drilling through their shells. The duration of attacks estimated by isotope sclerochronology of oyster shells collected during attacks in progress range from 90 to 230 days, while experimental observation of interactions documented one attack greater than 103 days. The prolonged nature of attacks suggests that V. salebrosa is best characterized as an ectoparasite than as a predator, which is the ancestral condition in the Muricidae. An ectoparasitic lifestyle is also evident in the unusual interaction traces of this species, which include foot scars, feeding tunnels and feeding tubes, specialized soft anatomy, and in the formation of male-female Pairs, which is consistent with protandrous hermaphroditism, as is typical in sedentary gastropods. To delay death of its host, V. salebrosa targets renewable resources when feeding, such as blood and digestive glands. A congener, Vitularia miliaris from the Indo-Pacific, has an identical feeding biology The origin and persistence of extremely slow feeding in the tropics challenges our present understanding of selective pressures influencing the evolution of muricid feeding behaviors and morphological adaptations. Previously, it has been suggested that faster feeding is advantageous because it permits predators to spend a greater proportion of time hiding in enemy-free refugia or to take additional prey, the energetic benefits of which could be translated into increased fecundity or defenses. The benefits of exceptionally slow feeding have received little consideration. In the microhabitat preferred by V. salebrosa (beneath boulders), it is possible that prolonged interactions with hosts decrease vulnerability to enemies by reducing the frequency of risky foraging events between feedings . Ectoparasitic feeding through tunnels by V. salebrosa may also reduce competitive interactions with kleptoparasites (e.g., crabs, snails) that steal food through the gaped valves of dead or dying hosts.
Resumo:
The difference in phenotypes of queens and workers is a hallmark of the highly eusocial insects. The caste dimorphism is often described as a switch-controlled polyphenism, in which environmental conditions decide an individual's caste. Using theoretical modeling and empirical data from honeybees, we show that there is no discrete larval developmental switch. Instead, a combination of larval developmental plasticity and nurse worker feeding behavior make up a colony-level social and physiological system that regulates development and produces the caste dimorphism. Discrete queen and worker phenotypes are the result of discrete feeding regimes imposed by nurses, whereas a range of experimental feeding regimes produces a continuous range of phenotypes. Worker ovariole numbers are reduced through feeding-regime-mediated reduction in juvenile hormone titers, involving reduced sugar in the larval food. Based on the mechanisms identified in our analysis, we propose a scenario of the evolutionary history of honeybee development and feeding regimes.
Resumo:
The cranial anatomy of Dinilysia patagonica, a terrestrial snake from the Upper Cretaceous of Argentina, is redescribed and illustrated, based on high-resolution X-ray computed tomography and better preparations made on previously known specimens, including the holotype. Previously unreported characters reinforce the intriguing mosaic nature of the skull of Dinilysia, with a suite of plesiomorphic and apomorphic characters with respect to extant snakes. Newly recognized plesiomorphies are the absence of the medial vertical flange of the nasal, lateral position of the prefrontal, lizard-like contact between vomer and palatine, floor of the recessus scalae tympani formed by the basioccipital, posterolateral corners of the basisphenoid strongly ventrolaterally projected, and absence of a medial parietal pillar separating the telencephalon and mesencephalon, amongst others. We also reinterpreted the structures forming the otic region of Dinilysia, confirming the presence of a crista circumfenestralis, which represents an important derived ophidian synapomorphy. Both plesiomorphic and apomorphic traits of Dinilysia are treated in detail and illustrated accordingly. Results of a phylogenetic analysis support a basal position of Dinilysia, as the sister-taxon to all extant snakes. The fossil taxa Yurlunggur, Haasiophis, Eupodophis, Pachyrhachis, and Wonambi appear as derived snakes nested within the extant clade Alethinophidia, as stem-taxa to the crown-clade Macrostomata. The hypothesis of a sister-group relationship between Dinilysia and Najash rionegrina, as suggested by some authors, is rejected by the results of our analysis.
Resumo:
The Characiformes are distributed throughout large portions of the freshwaters of Africa and America. About 90% of the almost 2000 characiform species inhabit the American rivers, with their greatest diversity occurring in the Neotropical region. As in most other groups of fishes, the current knowledge about characiform myology is extremely poor. This study presents the results of a survey of the mandibular, hyopalatine, and opercular musculature of 65 species representing all the 18 traditionally recognized characiform families, including the 14 subfamilies and several genera incertae sedis of the Characidae, the most speciose family of the order. The morphological variation of these muscles across the order is documented in detail and the homologies of the characiform adductor mandibulae divisions are clarified. Accordingly, the mistaken nomenclature previously applied to these divisions in some characiform taxa is herein corrected. Contradicting some previous studies, we found that none of the examined characiforms lacks an A3 section of the adductor mandibulae, but instead some taxa have an A3 continuous with A2. Derived myological features are identified as new putative synapomorphies for: the Characoidei; the clade composed of the Alestidae, Characidae, Gasteropelecidae, Cynodontoidea, and Erythrinoidea; the clade Cynodontoidea plus Erythrinoidea; the clade formed by Ctenoluciidae and Erythrinidae; the Serrasalminae; and the Triportheinae. Additionally, new myological data seems to indicate that the Agoniatinae might be more closely related to cynodontoids and erythrinoids than to other characids. (C) 2012 Elsevier GmbH. All rights reserved.