967 resultados para Protein Modification
Resumo:
The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein v.,as isolated from [S-35]methionine- and [P-33]orthophosphate-labelled IRSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role or tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580. an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependant tyrosine kinase activity and that this modification influences its cellular distribution.
Resumo:
Enzymes that mediate reversible epigenetic modifications have not only been recognized as key in regulating gene expression(1) and oncogenesis(2,3), but also provide potential targets for molecular therapy(4). Although the methylation of arginine 3 of histone 4 ( H4R3) by protein arginine methyltransferase 1 ( PRMT1) is a critical modification for active chromatin(5,6) and prevention of heterochromatin spread(7), there has been no direct evidence of any role of PRMTs in cancer. Here, we show that PRMT1 is an essential component of a novel Mixed Lineage Leukaemia ( MLL) oncogenic transcriptional complex with both histone acetylation and H4R3 methylation activities, which also correlate with the expression of critical MLL downstream targets. Direct fusion of MLL with PRMT1 or Sam68, a bridging molecule in the complex for PRMT1 interaction, could enhance self-renewal of primary haematopoietic cells. Conversely, specific knockdown of PRMT1 or Sam68 expression suppressed MLL-mediated transformation. This study not only functionally dissects the oncogenic transcriptional machinery associated with an MLL fusion complex, but also uncovers-for the first time-an essential function of PRMTs in oncogenesis and reveals their potential as novel therapeutic targets in human cancer.
Resumo:
Neprilysin (NEP), also known as membrane metalloendopeptidase (MME), is considered amongst the most important ß-amyloid (Aß)-degrading enzymes with regard to prevention of Alzheimer's disease (AD) pathology. Variation in the NEP gene (MME) has been suggested as a risk factor for AD. We conducted a genetic association study of 7MME SNPs - rs1836914, rs989692, rs9827586, rs6797911, rs61760379, rs3736187, rs701109 - with respect to AD risk in a cohort of 1057 probable and confirmed AD cases and 424 age-matched non-demented controls from the United Kingdom, Italy and Sweden. We also examined the association of these MME SNPs with NEP protein level and enzyme activity, and on biochemical measures of Aß accumulation in frontal cortex - levels of total soluble Aß, oligomeric Aß(1-42), and guanidine-extractable (insoluble) Aß - in a sub-group of AD and control cases with post-mortem brain tissue. On multivariate logistic regression analysis one of the MME variants (rs6797911) was associated with AD risk (P = 0.00052, Odds Ratio (O.R. = 1.40, 95% confidence interval (1.16-1.70)). None of the SNPs had any association with Aß levels; however, rs9827586 was significantly associated with NEP protein level (p=0.014) and enzyme activity (p=0.006). Association was also found between rs701109 and NEP protein level (p=0.026) and a marginally non-significant association was found for rs989692 (p=0.055). These data suggest that MME variation may be associated with AD risk but we have not found evidence that this is mediated through modification of NEP protein level or activity.
Resumo:
S-(2-Succinyl)cysteine (2SC) has been identified as a chemical modification in plasma proteins, in the non-mercaptalbumin fraction of human plasma albumin, in human skin collagen, and in rat skeletal muscle proteins and urine. 2SC increases in human skin collagen with age and is increased in muscle protein of diabetic vs. control rats. The concentration of 2SC in skin collagen and muscle protein correlated strongly with that of the advanced glycation/lipoxidation end-product (AGE/ALE), N(epsilon)-(carboxymethyl)lysine (CML). 2SC is formed by a Michael addition reaction of cysteine sulfhydryl groups with fumarate at physiological pH. Fumarate, but not succinate, inactivates the sulfhydryl enzyme, glyceraldehyde-3-phosphate dehydrogenase in vitro, in concert with formation of 2SC. 2SC is the first example of spontaneous chemical modification of protein by a metabolic intermediate in the Krebs cycle. These observations identify fumarate as an endogenous electrophile and suggest a role for fumarate in regulation of metabolism.
Resumo:
Chemical, nonenzymatic modification of protein and lipids by reducing sugars, such as glucose, is thought to contribute to age-related deterioration in tissue protein and cellular membranes and to the pathogenesis of diabetic complications. This report describes the synthesis and quantification of N-(glucitol)ethanolamine (GE) and N-(carboxymethyl)serine (CMS), two products of nonenzymatic modification of aminophospholipids. GE is the product of reduction and hydrolysis of glycated phosphatidylethanolamine (PE), while CMS is formed through reaction of phosphatidylserine (PS) with products of oxidation of either carbohydrate (glycoxidation) or lipids (lipoxidation). Gas chromatography/mass spectrometry procedures for quantification of the N,O-acetyl methyl ester derivatives of the modified head groups were developed. GE and CMS were quantified in samples of PE and PS, respectively, following incubation with glucose in vitro; CMS formation was dependent on the presence of oxygen during the incubation. Both GE and CMS were detected and quantified in lipid extracts of human red blood cell membranes. The content of GE, but not CMS, was increased in the lipids from diabetic compared to nondiabetic subjects. Measurement of these modified lipids should prove useful for assessing the role of carbonyl-amine reactions of aminophospholipids in aging and age-related diseases.
Resumo:
Nepsilon-(Carboxymethyl)lysine (CML) is a stable chemical modification of proteins formed from both carbohydrates and lipids during autoxidation reactions. We hypothesized that carboxymethyl lipids such as (carboxymethyl)phosphatidylethanolamine (carboxymethyl-PE) would also be formed in these reactions, and we therefore developed a gas chromatography-mass spectrometry assay for quantification of carboxymethylethanolamine (CME) following hydrolysis of phospholipids. In vitro, CME was formed during glycation of dioleoyl-PE under air and from linoleoylpalmitoyl-PE, but not from dioleoyl-PE, in the absence of glucose. In vivo, CME was detected in lipid extracts of red blood cell membranes, approximately 0.14 mmol of CME/mol of ethanolamine, from control and diabetic subjects, (n = 22, p > 0.5). Levels of CML in erythrocyte membrane proteins were approximately 0.2 mmol/mol of lysine for both control and diabetic subjects (p > 0.5). For this group of diabetic subjects there was no indication of increased oxidative modification of either lipid or protein components of red cell membranes. CME was also detected in fasting urine at 2-3 nmol/mg of creatinine in control and diabetic subjects (p = 0.085). CME inhibited detection of advanced glycation end product (AGE)-modified protein in a competitive enzyme-linked immunosorbent assay using an anti-AGE antibody previously shown to recognize CML, suggesting that carboxymethyl-PE may be a component of AGE lipids detected in AGE low density lipoprotein. Measurement of levels of CME in blood, tissues, and urine should be useful for assessing oxidative damage to membrane lipids during aging and in disease.
Resumo:
To assess the significance of glycation, nonenzymatic browning, and oxidation of lens crystallins in cataract formation in elderly diabetic patients, we measured three distinct products of glycation, browning, and oxidation reactions in cataractous lens crystallins from 29 diabetic patients (mean +/- SD age 72.8 +/- 8.8 yr) and 24 nondiabetic patients (age 73.5 +/- 8.3 yr). Compounds measured included 1) fructoselysine (FL), the first stable product of glycation; 2) pentosidine, a fluorescent, carbohydrate-derived protein cross-link between lysine and arginine residues formed during nonenzymatic browning; and 3) N epsilon-(carboxymethyl)lysine (CML), a product of autoxidation of sugar adducts to protein. In diabetic compared with nondiabetic patients, there were significant increases (P less than 0.001) in HbA1 (10.2 +/- 3.1 vs. 7.1 +/- 0.7%), FL (7.6 +/- 5.4 vs. 1.7 +/- 1.2 mmol/mol lysine), and pentosidine (6.3 +/- 2.8 vs. 3.8 +/- 1.9 mumol/mol lysine). The disproportionate elevation of FL compared with HbA1 suggests a breakdown in the lens barrier to glucose in diabetes, whereas the increase in pentosidine is indicative of accelerated nonenzymatic browning of diabetic lens crystallins. CML levels were similar in the two groups (7.1 +/- 2.4 vs. 6.8 +/- 3.0 mmol/mol lysine), providing no evidence for increased oxidative stress in the diabetic cataract. Thus, although the modification of lens crystallins by autoxidation reactions was not increased in diabetes, the increase in glycation and nonenzymatic browning suggests that these processes may acclerate the development of cataracts in diabetic patients.
Resumo:
Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m(5)C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled.
Resumo:
Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipo- polysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabi- dopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection.
Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability
Resumo:
Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.
Resumo:
This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.
Resumo:
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.
Resumo:
Ubiquitination of proteins is a post-translational modification, which decides on the cellular fate of the protein. Addition of ubiquitin moieties to proteins is carried out by the sequential action of three enzymes: E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; and E3, ubiquitin ligase. The TRAF-interacting protein (TRAIP, TRIP, RNF206) functions as Really Interesting New Gene (RING)-type E3 ubiquitin ligase, but its physiological substrates are not yet known. TRAIP was reported to interact with TRAF [tumor necrosis factor (TNF) receptor-associated factors] and the two tumor suppressors CYLD and Syk (spleen tyrosine kinase). Ectopically expressed TRAIP was shown to inhibit nuclear factor-kappa B (NF-κB) signalling. However, recent results suggested a role for TRAIP in biological processes other than NF-κB regulation. Knock-down of TRAIP in human epidermal keratinocytes repressed cellular proliferation and induced a block in the G1/S phase of the cell cycle without affecting NF-κB signalling. TRAIP is necessary for embryonal development as mutations affecting the Drosophila homologue of TRAIP are maternal effect-lethal mutants, and TRAIP knock-out mice die in utero because of aberrant regulation of cell proliferation and apoptosis. These findings underline the tight link between TRAIP and cell proliferation. In this review, we summarize the data on TRAIP and put them into a larger perspective regarding the role of TRAIP in the control of tissue homeostasis.
Resumo:
Les fichiers qui accompagnent mon document sont des tableaux supplémentaires réalisés avec Excel (Microsoft Office), dans la version papier du mémoire ces fichiers sont sur un CD-ROM.
Resumo:
Les protéines sont les produits finaux de la machinerie génétique. Elles jouent des rôles essentiels dans la définition de la structure, de l'intégrité et de la dynamique de la cellule afin de promouvoir les diverses transformations chimiques requises dans le métabolisme et dans la transmission des signaux biochimique. Nous savons que la doctrine centrale de la biologie moléculaire: un gène = un ARN messager = une protéine, est une simplification grossière du système biologique. En effet, plusieurs ARN messagers peuvent provenir d’un seul gène grâce à l’épissage alternatif. De plus, une protéine peut adopter plusieurs fonctions au courant de sa vie selon son état de modification post-traductionelle, sa conformation et son interaction avec d’autres protéines. La formation de complexes protéiques peut, en elle-même, être déterminée par l’état de modifications des protéines influencées par le contexte génétique, les compartiments subcellulaires, les conditions environmentales ou être intrinsèque à la croissance et la division cellulaire. Les complexes protéiques impliqués dans la régulation du cycle cellulaire sont particulièrement difficiles à disséquer car ils ne se forment qu’au cours de phases spécifiques du cycle cellulaire, ils sont fortement régulés par les modifications post-traductionnelles et peuvent se produire dans tous les compartiments subcellulaires. À ce jour, aucune méthode générale n’a été développée pour permettre une dissection fine de ces complexes macromoléculaires. L'objectif de cette thèse est d'établir et de démontrer une nouvelle stratégie pour disséquer les complexes protéines formés lors du cycle cellulaire de la levure Saccharomyces cerevisiae (S. cerevisiae). Dans cette thèse, je décris le développement et l'optimisation d'une stratégie simple de sélection basée sur un essai de complémentation de fragments protéiques en utilisant la cytosine déaminase de la levure comme sonde (PCA OyCD). En outre, je décris une série d'études de validation du PCA OyCD afin de l’utiliser pour disséquer les mécanismes d'activation des facteurs de transcription et des interactions protéine-protéines (IPPs) entre les régulateurs du cycle cellulaire. Une caractéristique clé du PCA OyCD est qu'il peut être utilisé pour détecter à la fois la formation et la dissociation des IPPs et émettre un signal détectable (la croissance des cellules) pour les deux types de sélections. J'ai appliqué le PCA OyCD pour disséquer les interactions entre SBF et MBF, deux facteurs de transcription clés régulant la transition de la phase G1 à la phase S. SBF et MBF sont deux facteurs de transcription hétérodimériques composés de deux sous-unités : une protéine qui peut lier directement l’ADN (Swi4 ou Mbp1, respectivement) et une protéine commune contenant un domain d’activation de la transcription appelée Swi6. J'ai appliqué le PCA OyCD afin de générer un mutant de Swi6 qui restreint ses activités transcriptionnelles à SBF, abolissant l’activité MBF. Nous avons isolé des souches portant des mutations dans le domaine C-terminal de Swi6, préalablement identifié comme responsable dans la formation de l’interaction avec Swi4 et Mbp1, et également important pour les activités de SBF et MBF. Nos résultats appuient un modèle où Swi6 subit un changement conformationnel lors de la liaison à Swi4 ou Mbp1. De plus, ce mutant de Swi6 a été utilisé pour disséquer le mécanisme de régulation de l’entrée de la cellule dans un nouveau cycle de division cellulaire appelé « START ». Nous avons constaté que le répresseur de SBF et MBF nommé Whi5 se lie directement au domaine C-terminal de Swi6. Finalement, j'ai appliqué le PCA OyCD afin de disséquer les complexes protéiques de la kinase cycline-dépendante de la levure nommé Cdk1. Cdk1 est la kinase essentielle qui régule la progression du cycle cellulaire et peut phosphoryler un grand nombre de substrats différents en s'associant à l'une des neuf protéines cycline régulatrice (Cln1-3, Clb1-6). Je décris une stratégie à haut débit, voir à une échelle génomique, visant à identifier les partenaires d'interaction de Cdk1 et d’y associer la cycline appropriée(s) requise(s) à l’observation d’une interaction en utilisant le PCA OyCD et des souches délétées pour chacune des cyclines. Mes résultats nous permettent d’identifier la phase(s) du cycle cellulaire où Cdk1 peut phosphoryler un substrat particulier et la fonction potentielle ou connue de Cdk1 pendant cette phase. Par exemple, nous avons identifié que l’interaction entre Cdk1 et la γ-tubuline (Tub4) est dépendante de Clb3. Ce résultat est conforme au rôle de Tub4 dans la nucléation et la croissance des faisceaux mitotiques émanant des centromères. Cette stratégie peut également être appliquée à l’étude d'autres IPPs qui sont contrôlées par des sous-unités régulatrices.