992 resultados para Propagation velocity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the author's on-going research is to explore the feasibility of determining reliable in situ curves of shear modulus as a function of strain using the dynamic test. The purpose of this paper is limited to investigating what material stiffness is measured from a dynamic test, focusing on the harmonic excitation test. A one-dimensional discrete model with nonlinear material properties is used for this purpose. When a sinusoidal load is applied, the cross-correlation of signals from different depths estimates a wave velocity close to the one calculated from the secant modulus in the stress-strain loops under steady-state conditions. The variables that contributed to changing the average slope of the stress-strain loop also influence the estimate of the wave velocity from cross-correlation. Copyright ASCE 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combustion in stratified mixtures is envisaged in practical energy systems such as direct-injection spark-ignited (DISI) car engines, gas turbines, for reducing CO2 and pollutant emissions while protecting their efficiency. The mixture gradients change the fundamental properties of the flame, especially by a difference in temperature and composition between the burnt gases and those of a flame consuming a homogeneous mixture. This paper presents an investigation of the properties of the flame propagating in a lean homogeneous mixture after ignition in a richer mixture according to the magnitude of the stratification. Three magnitudes of stratification are investigated. The local flame burning velocity is determined by an original PIV algorithm developed previously. The local equivalence ratio in the fresh gases is measured from anisole PLIF. From the simultaneous PIV-PLIF measurements, the flame burning velocities conditioned on the local stretch rate and equivalence ratio in fresh gases are measured. The flame propagating through the homogeneous lean mixture has properties depending on the ignition conditions in the stratified layer. The flame propagating in the lean mixture is back-supported longer for ignition under the richer condition. The change of stretch sensitivity and burning velocity of the flame in the lean mixture is measured over time for the three magnitudes of mixture stratification investigated. The ignition in richer mixtures compensates for the nonequidiffusion effect of lean propane flame and sustains its robustness to stretch. The flame propagation in the lean homogeneous mixture is enhanced by ignition in a richer stratified layer, as much by their robustness to stretch as by an increase in the flame speed or the burning velocity. The decay time of this influence of the stratification, called memory effect, is determined. © 2013 The Combustion Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a photonic crystal hetero-waveguide based on silicon-on-insulator (SOI) slab, consisting of two serially connected width-reduced photonic crystal waveguides with different radii of the air holes adjacent to the waveguide. We show theoretically that the transmission window of the structure corresponds to the transmission range common to both waveguides and it is in inverse proportion to the discrepancy between the two waveguides. Also the group velocity of guided mode can be changed from low to high or high to low, depending on which port of the structure the signal is input from just in the same device, and the variation is proportional to the discrepancy between the two waveguides. Using this novel structure, we realize flexible control of transmission window and group velocity of guided mode simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the, fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation losses in single-line defect waveguides in a two-dimensional (2D) square-lattice photonic crystal (PC) consisted of infinite dielectric rods and a triangular-lattice photonic crystal slab with air holes are studied by finite-difference time-domain (FDTD) technique and a Pade approximation. The decaying constant beta of the fundamental guided mode is calculated from the mode frequency, the quality factor (Q-factor) and the group velocity v(g) as beta = omega/(2Qv(g)). In the 2D square-lattice photonic crystal waveguide (PCW), the decaying rate ranged from 10(3) to 10(-4) cm(-1) can be reliably obtained from 8 x 10(3)-item FDTD output with the FDTD computing time of 0.386 ps. And at most 1 ps is required for the mode with the Q-factor of 4 x 10(11) and the decaying rate of 10(-7) cm(-1). In the triangular-lattice photonic crystal slab, a 10(4)-item FDTD output is required to obtain a reliable spectrum with the Q-factor of 2.5 x 10(8) and the decaying rate of 0.05 cm(-1). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method of tailoring stimulated Brillouin scattering (SBS) gain spectrum for slow light propagation is proposed by use of two Gaussian-shaped broadband pump beams with different powers and spectral widths. The central frequency interval between the two pump beams are carefully set to be two inherent Brillouin frequency shift, ensuring that the gain spectrum of one pump has the same central frequency with the loss spectrum of the other one. Different gain profiles are obtained and analyzed. Among them a special gain profile is found that ensures a zero-broadening of the signal pulse independent of the Brillouin gain. This is owing to the compensation between the positive gain-dependent broadening and the negative GVD (group velocity dispersion) dependent broadening. The relationship of two pump beams is also found for constructing such a gain profile. It provides us a new idea of managing the broadening of SBS-based slow pulse by artificially constructing and optimizing the profile of gain spectrum. (c) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology of "explosion in fractures" is one of new synthetic engineering methods used in low permeability reservoirs. The most important problem arose from the technology is to assess the deflagration propagation capability of milky explosives in rock fractures. In order to investigate detailed this problem in the laboratory, an experimental setup was designed and developed in which different conditions can be simulated. The experimental setup mainly includes two parts. One is the experimental part and the other is the measurement part. In the experimental setup, the narrow slots with different width can be simulated; meanwhile, different initial pressures and initial temperatures can be loaded on the explosives inside the narrow slots. The initial pressure range is from 0-60 MPa, and the initial temperatures range is from room temperature to 100 V. The temperature and the velocity of deflagration wave can be measured; meanwhile the corresponding pressure in the narrow slot is also measured. In the end, some typical measurement results are briefly presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel multiscale model of brittle crack propagation in an Ag plate with macroscopic dimensions has been developed. The model represents crack propagation as stochastic drift-diffusion motion of the crack tip atom through the material, and couples the dynamics across three different length scales. It integrates the nanomechanics of bond rupture at the crack tip with the displacement and stress field equations of continuum based fracture theories. The finite element method is employed to obtain the continuum based displacement and stress fields over the macroscopic plate, and these are then used to drive the crack tip forward at the atomic level using the molecular dynamics simulation method based on many-body interatomic potentials. The linkage from the nanoscopic scale back to the macroscopic scale is established via the Ito stochastic calculus, the stochastic differential equation of which advances the tip to a new position on the macroscopic scale using the crack velocity and diffusion constant obtained on the nanoscale. Well known crack characteristics, such as the roughening transitions of the crack surfaces, crack velocity oscillations, as well as the macroscopic crack trajectories, are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and numerical studies are presented of the amplitude modulation of ion-acoustic waves (IAWs) in a plasma consisting of warm ions, Maxwellian electrons, and a cold electron beam. Perturbations parallel to the carrier IAW propagation direction have been investigated. The existence of four distinct linear ion acoustic modes is shown, each of which possesses a different behavior from the modulational stability point of view. The stability analysis, based on a nonlinear Schrodinger equation (NLSE) reveals that the IAW may become unstable. The stability criteria depend on the IAW carrier wave number, and also on the ion temperature, the beam velocity and the beam electron density. Furthermore, the occurrence of localized envelope structures (solitons) is investigated, from first principles. The numerical analysis shows that the two first modes (essentially IAWs, modified due to the beam) present a complex behavior, essentially characterized by modulational stability for large wavelengths and instability for shorter ones. Dark-type envelope excitations (voids, holes) occur in the former case, while bright-type ones (pulses) appear in the latter. The latter two modes are characterized by an intrinsic instability, as the frequency develops a finite imaginary part for small ionic temperature values. At intermediate temperatures, both bright- and dark-type excitations may exist, although the numerical landscape is intertwined between stability and instability regions.(c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An intralaminar damage model, based on a continuum damage mechanics approach, is presented to model the damage mechanisms occurring in carbon fibre composite structures incorporating fibre tensile and compressive breakage, matrix tensile and compressive fracture, and shear failure. The damage model, together with interface elements for capturing interlaminar failure, is implemented in a finite element package and used in a detailed finite element model to simulate the response of a stiffened composite panel to low-velocity impact. Contact algorithms and friction between delaminated plies were included, to better simulate the impact event. Analyses were executed on a high performance computer (HPC) cluster to reduce the actual time required for this detailed numerical analysis. Numerical results relating to the various observed interlaminar damage mechanisms, delamination initiation and propagation, as well as the model’s ability to capture post-impact permanent indentation in the panel are discussed. Very good agreement was achieved with experimentally obtained data of energy absorbed and impactor force versus time. The extent of damage predicted around the impact site also corresponded well with the damage detected by non destructive evaluation of the tested panel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of the widths and shifts of optically thin emission lines in the ultraviolet spectrum of the active dwarf e Eri (K2 V) are presented. The spectra were obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. The linewidths are used to find the non-thermal energy density and its variation with temperature from the chromosphere to the upper transition region. The energy fluxes that could be carried by Alfvén and acoustic waves are investigated, to test their possible roles in coronal heating. Acoustic waves do not appear to be a viable means of coronal heating. There is, in principle, ample flux in Alfvén waves, but detailed calculations of wave propagation are required before definite conclusions can be drawn concerning their viability. The high sensitivity and spectral resolution of the above instruments have allowed two-component Gaussian fits to be made to the profiles of the stronger transition region lines. The broad and narrow components that result share some similarities with those observed in the Sun, but in e Eri the broad component is redshifted relative to the narrow component and contributes more to the total line flux. The possible origins of the two components and the energy fluxes implied are discussed. On balance our results support the conclusion of Wood, Linsky & Ayres, that the narrow component is related to Alfvén waves reaching to the corona, but the origin of the broad component is not clear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

senior thesis written for Oceanography 445

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La méthode de projection et l'approche variationnelle de Sasaki sont deux techniques permettant d'obtenir un champ vectoriel à divergence nulle à partir d'un champ initial quelconque. Pour une vitesse d'un vent en haute altitude, un champ de vitesse sur une grille décalée est généré au-dessus d'une topographie donnée par une fonction analytique. L'approche cartésienne nommée Embedded Boundary Method est utilisée pour résoudre une équation de Poisson découlant de la projection sur un domaine irrégulier avec des conditions aux limites mixtes. La solution obtenue permet de corriger le champ initial afin d'obtenir un champ respectant la loi de conservation de la masse et prenant également en compte les effets dûs à la géométrie du terrain. Le champ de vitesse ainsi généré permettra de propager un feu de forêt sur la topographie à l'aide de la méthode iso-niveaux. L'algorithme est décrit pour le cas en deux et trois dimensions et des tests de convergence sont effectués.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tsunamis are water waves generated by a sudden vertical displacement of the water surface. They are waves generated in the ocean by the disturbance associated with seismic activity, under sea volcanic eruptions, submarine landslides, nuclear explosion or meteorite impacts with the ocean. These waves are generated in the ocean and travel into coastal bays, gulfs, estuaries and rivers. These waves travel as gravity waves with a velocity dependent on water depth. The term tsunami is Japanese and means harbour (tsu) and wave (nami). It has been named so because such waves often develop resonant phenomena in harbours after offshore earthquakes.