914 resultados para Projections onto convex sets
Resumo:
Structural health monitoring has been accepted as a justified effort for long-span bridges, which are critical to a region's economic vitality. As the most heavily instrumented bridge project in the world, WASHMS - Wind And Structural Health Monitoring System has been developed and installed on the cable-supported bridges in Hong Kong (Wong and Ni 2009a). This chapter aims to share some of the experience gained through the operations and studies on the application of WASHMS. It is concluded that Structural Health Monitoring should be composed of two main components: Structural Performance Monitoring (SPM) and Structural Safety Evaluation (SSE). As an example to illustrate how the WASHMS could be used for structural performance monitoring, the layout of the sensory system installed on the Tsing Ma Bridge is briefly described. To demonstrate the two broad approaches of structural safety evaluation - Structural Health Assessment and Damage Detection, three examples in the application of SHM information are presented. These three examples can be considered as pioneer works for the research and development of the structural diagnosis and prognosis tools required by the structural health monitoring for monitoring and evaluation applications.
Resumo:
Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000 ng/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days, cell growth declined to a value similar to control. Significantly less cell growth was observed for construct with 1000 ng/ml of rhBMP-2 from 20 days onwards. Confocal microscopy confirmed viability of osteoblasts and at day 20, groups seeded with rhBMP-2 displayed heightened cell death as compared to control. Phase contrast and scanning electron microscopy revealed that osteoblasts heavily colonized surfaces, rods and pores of the PCL-TCP scaffolds. This was consistent for all groups. Finally, Von Kossa and osteocalcin assays demonstrated that cells from all groups maintained their osteogenic phenotype throughout the experiment. Calcification was observed as early as four days after stimulation for groups seeded with rhBMP-2. In conclusion, rhBMP-2 seems to enhance the differentiated function of canine osteoblasts in a non-dose dependent manner. This resulted in accelerated mineralization, followed by death of osteoblasts as they underwent terminal differentiation. Notably, PCL-TCP scaffolds seeded only with canine osteoblasts could sustain excellent osteogenic expression in vitro. Hence, the synergy of PCL with bioactive TCP and rhBMP-2 in a novel composite scaffold, could offer an exciting approach for bone regeneration.
Resumo:
Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.
Resumo:
This research report documents work conducted by the Center for Transportation (CTR) at The University of Texas at Austin in analyzing the Joint Analysis using the Combined Knowledge (J.A.C.K.) program. This program was developed by the Texas Department of Transportation (TxDOT) to make projections of revenues and expenditures. This research effort was to span from September 2008 to August 2009, but the bulk of the work was completed and presented by December 2008. J.A.C.K. was subsequently renamed TRENDS, but for consistency with the scope of work, the original name is used throughout this report.
Resumo:
This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern- based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experiments have been conducted to compare the proposed two-stage filtering (T-SM) model with other possible "term-based + pattern-based" or "term-based + term-based" IF models. The results based on the RCV1 corpus show that the T-SM model significantly outperforms other types of "two-stage" IF models.
Resumo:
Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.
Resumo:
A system to segment and recognize Australian 4-digit postcodes from address labels on parcels is described. Images of address labels are preprocessed and adaptively thresholded to reduce noise. Projections are used to segment the line and then the characters comprising the postcode. Individual digits are recognized using bispectral features extracted from their parallel beam projections. These features are insensitive to translation, scaling and rotation, and robust to noise. Results on scanned images are presented. The system is currently being improved and implemented to work on-line.
Resumo:
It is natural for those involved in entertainment to focus on the art. However, like any activity in even a free society, those involved in entertainment industries must operate within borders set by the law. This article examines the main areas of law that impact entertainment in an Australian context. It contrasts the position in relation to freedom of expression in Australia with that in the United States, which also promotes freedom of expression in a free society. It then briefly canvases the main limits on entertainment productions under Australian law.
Resumo:
The primary objective of the experiments reported here was to demonstrate the effects of opening up the design envelope for auditory alarms on the ability of people to learn the meanings of a set of alarms. Two sets of alarms were tested, one already extant and one newly-designed set for the same set of functions, designed according to a rationale set out by the authors aimed at increasing the heterogeneity of the alarm set and incorporating some well-established principles of alarm design. For both sets of alarms, a similarity-rating experiment was followed by a learning experiment. The results showed that the newly-designed set was judged to be more internally dissimilar, and easier to learn, than the extant set. The design rationale outlined in the paper is useful for design purposes in a variety of practical domains and shows how alarm designers, even at a relatively late stage in the design process, can improve the efficacy of an alarm set.
Resumo:
We address the problem of face recognition on video by employing the recently proposed probabilistic linear discrimi-nant analysis (PLDA). The PLDA has been shown to be robust against pose and expression in image-based face recognition. In this research, the method is extended and applied to video where image set to image set matching is performed. We investigate two approaches of computing similarities between image sets using the PLDA: the closest pair approach and the holistic sets approach. To better model face appearances in video, we also propose the heteroscedastic version of the PLDA which learns the within-class covariance of each individual separately. Our experi-ments on the VidTIMIT and Honda datasets show that the combination of the heteroscedastic PLDA and the closest pair approach achieves the best performance.