927 resultados para Programmed Death Phenomena


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inagaki and Hatano (2002) have argued that young children initially understand biological phenomena in terms of vitalism, a mode of construal in which life or life-force is the central causal-explanatory concept. This study investigated the development of vitalistic reasoning in young children's concepts of life, the human body and death. Sixty preschool children between the ages of 3 years, 7 months and 5 years, 11 months participated. All children were initially given structured interviews to assess their knowledge of (1) human body function and (2) death. From this sample 40 children in the Training group were taught about the human body and how it functions to maintain life. The Control group (n = 20) received no training. All 60 children were subsequently reassessed on their knowledge of human body function and death. Results from the initial interviews indicated that young children who spontaneously appealed to vitalistic concepts in reasoning about human body functioning were also more sophisticated in their understanding of death. Results from the posttraining interviews showed that children readily learned to adopt a vitalistic approach to human body functioning, and that this learning coincided with significant development in their understanding of human body function, and of death. The overall pattern of results supports the claim that the acquisition of a vitalistic causal-explanatory framework serves to structure children's concepts and facilitates learning in the domain of biology. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase of cancer specificity and efficacy of anti-tumoral agents are prime strategies to overcome the deleterious side effects associated with anti-cancer treatments. We described earlier a cell-permeable protease-resistant peptide derived from the p120 RasGAP protein, called TAT-RasGAP317-326, as being an efficient tumor-specific sensitizer to apoptosis induced by genotoxins in vitro and in vivo. Bcl-2 family members regulate the intrinsic apoptotic response and as such could be targeted by TAT-RasGAP317-326. Our results indicate that the RasGAP-derived peptide increases cisplatin-induced Bax activation. We found no evidence, using in particular knock-out cells, of an involvement of other Bcl-2 family proteins in the tumor-specific sensitization activity of TAT-RasGAP317-326. The absence of Bax and Bak in mouse embryonic fibroblasts rendered them resistant to cisplatin-induced apoptosis and consequently to the sensitizing action of the RasGAP-derived peptide. Surprisingly, in the HCT116 colon carcinoma cell line, the absence of Bax and Bak did not prevent cisplatin-induced apoptosis and the ability of TAT-RasGAP317-326 to augment this response. Our study also revealed that p53, while required for an efficient genotoxin-induced apoptotic response, is dispensable for the ability of the RasGAP-derived peptide to improve the capacity of genotoxins to decrease long-term survival of cancer cells. Hence, even though genotoxin-induced Bax activity can be increased by TAT-RasGAP317-326, the sensitizing activity of the RasGAP-derived peptide can operate in the absence of a functional mitochondrial intrinsic death pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIP(L), a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIP(L) expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIP(L) protein and fully reversed FLIP(L)-mediated TRAIL resistance. Moreover, interference with endogenous FLIP(L) and FLIP(S) significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUME L'angiogénèse tumorale est un processus essentiel au développement des tumeurs. Les intégrines, molécules d'adhésions transmembranaires, sont d'importants effecteurs de l'angiogenèse. En permettant l'adhésion à la matrice extra-cellulaire, les intégrines transmettant des signaux de survie, de migration, et de prolifération. Le facteur de nécrose tumorale α (TNFα) est utilisé pour le traitement régional de cancers chez l'homme. II agit en détruisant sélectivement les vaisseaux angiogéniques. Cependant, son administration systémique chez l'homme est limitée par les réactions de vaso-dilatation sévères qu'il provoque. Le but de mon travail fut de rechercher des conditions permettant la sensibilisation des cellules endothéliales au TNFα et qui pourraient être applicables en clinique, ceci afin d'accroître l'efficacité de cette molécule. Nous avons testé la possibilité d'interférer avec les signaux de survie provenant des intégrines. Pour cela, des cellules endothéliales furent cultivées dans des conditions d'adhésion ou en suspension, ou alors exposées dans des conditions d'adhésion au zoledronate (biphosphonate contenant du nitrogène). Dans ces conditions, les effets du TNFα sur les cellules endothéliales furent étudiés, en particulier l'induction de la mort cellulaire. Dans ce travail, nous montrons que le zoledronate sensibilise les cellules endothéliales à la nécrose induite par TNFα. Cet effet s'accompagne de l'inhibition de la phosphorylation de FAK, PKB, et JNK, ainsi que de l'inhibition de la prénylation des protéines. En revanche, l'activation de NF-kB et p38 n'est pas perturbée. La restoration de la prénylation des protéines empêche la mort des HUVEC traitées par zoledronate et TNFα, et rétablit la phosphorylation de FAK, PKB, et JNK. Des essais d'angiogénèse in vivo montrent que le zoledronate inhibe l'angiogénèse induite par FGF-2. Le zoledronate encapsulé dans des liposomes permet de ralentir la croissance tumorale et synergise avec le TNFα en l'inhibant. L'inihibtion de la prénylation des protéines est un des mécanismes de sensibilisation du zoledronate au TNFα. In vivo, la synergie de leur association sur la croissance tumorale est efficace. Ces résultats encouragent la poursuite de l'étude des effets de ces deux drogues sur la croissance tumorale. SUMMARY The formation of tumor-associated vessels is essential for tumor progression. Cell adhesion molecules of the integrin family are important mediators of angiogenesis, by providing adhesive signals necessary for endothelial cell migration, proliferation and survival. Anti-angiogenic therapies are currently considered as highly promising in the treatment of human cancer. Tumor Necrosis Factor α (TNFα) is used for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of angiogenic tumor vessels. Systemic administration of TNFα in humans, however, induces a severe inflammatory condition that prevents its use far the treatments of tumors localized outside of limbs. The aim of my work was to find strategies to sensitize angiogenic endothelial cells to TNFα-induced death, which could be potentially translated into clinical setting to improve the therapeutic efficacy of TNFα. We specifically tested the hypothesis whether interference with integrin-mediated adhesion and signaling may sensitize endothelial cells to TNFα-induced death. To test this hypothesis we cultured endothelial cells (EC) under conditions of cell-matrix or cell-cell adhesion or exposed matrix-adherent EC to the nitrogen-containing bisphosphonate zoledronate, and characterized the effect on TNFα-mediated signaling events and cell death. We show that zoledronate sensitizes HUVEC to TNFα-induced necrosis-like programmed cell death. This effect was associated with suppression of sustained phosphorylation of PKB and JNK and decreased protein prenylation, whereas TNFα-induced activation of NF-kB and p38 were not inhibited. Restoration of protein prenylation rescued HUVEC from zoledronate and TNFα-induced death, and restored FAK, PKB and JNK phosphorylation. By using in vivo angiogenesis assay we showed that zoledronate suppressed FGF-2-induced angiogenesis. Liposome-encapulated zoledronate partially inhibited tumor growth and synergized with TNFα to fully suppress tumor growth. Taken together, this work has identified protein prenylation as a mechanisms by which zoledronate sensitizes endothelial cells to TNFα-induced death in vitro and provides initial evidence that zoledronate synergizes with TNFα in vivo resulting in improved anti-tumor activity. These results warrant further study of the anti-tumor effects of zoledronate and TNFα and should be further studies in view of their clinical relevance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine-cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae)). Colleters are secretory structures formed by a parenchymatic axis with vascular bundles, bound by a layer of secretory palisade-like epidermis. Some studies regarding the structure of colleters have focused on secretory cells structure, but not distinguished the secretory and senescent phases. Generally, in mucilage-secreting cells such as colleters, the endoplasmic reticulum and Golgi apparatus are involved in secretion production and transport. In these study, colleters structure of Bathysa gymnocarpa K. Schum. and B. stipulata (Vell.) C. Presl. (Rubiaceae) were determined in two phases: a secretory phase and a senescence one. Samples were collected and processed by usual light and electron microscopy techniques. Studied colleters are constituted by an epidermal palisade layer and a central axis formed by parenchymatic cells with rare vascular traces. During the secretory phase, epidermal cells presented a dense cytoplasm, small vacuoles, enhanced rough and smooth endoplasmic reticulum, and a Golgi apparatus close to large vesicles. During the senescence phase epidermal cells presented a disorganized membrane system. No intact organelles or vesicles were observed. The outer cell wall exhibited similar layers to that observed during the secretory phase. The senescent phase is easily defined by the morphology of the colleters, but not well defined at subcellular level. Our research suggests that programmed cell death starts on secretory phase. However, more evidences are needed to evaluate the phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym). The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le glaucome est la première cause de cécité irréversible à travers le monde. À présent il n’existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes ganglionnaires, les neurones qui envoient de l’information visuelle de la rétine au cerveau. Le mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du glaucome n’est pas bien compris, mais quelques responsables putatifs ont été proposés tels que l’excitotoxicité, le manque de neurotrophines, la compression mécanique, l’ischémie, les astrocytes réactifs et le stress oxidatif, parmis d’autres. Indépendamment de la cause, il est bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis qui déclenchent l’apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal définis. Pour aborder ce point, j’ai avancé l’hypothèse centrale que l’identification de voies de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de celles-ci lors de neuropathies oculaires telles que le glaucome. Dans la première partie de ma thèse, j’ai caractérisé le rôle de la famille de protéines stimulatrices d’apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l’apoptose. Les membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de p53 qui régulent l’apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l’hypothèse de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique des cellules rétiniennes ganglionnaires, et qu’une baisse ciblée de ASPP1 et ASPP2 par acide ribonucléique d’interference promeut la survie des cellules rétiniennes ganglionnaires. Dans la deuxième partie de ma thèse, j’ai caractérisé le rôle d’iASPP, le membre anti-apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes ganglionnaires. L’hypothèse de cette seconde étude est que la surexpression d’iASPP promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats (Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires. En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le glaucome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LEVADA-PIRES, A. C., M. F. CURY-BOAVENTURA, R. GORJAO, S. M. HIRABARA. E. F. PUGGINA, I. L. PELLEGRINOTTI, L. A. DOMINGUES FILHO, R. CURI, and T. C. PITHON-CURI. Induction of Lymphocyte Death by Short- and Long-Duration Triathlon Competitions. Med. Sci. Sporty Exerc., Vol. 4 1, No. 10, pp. 1896-1901, 2009. Purpose: The effect of triathlon competitions on death of lymphocytes from elite athletes was investigated. Material and Methods: Blood was collected from sedentary volunteers and triathletes at rest and after a short-duration triathlon (SDT) and after a long-duration triathlon (LDT-half Ironman) competitions. Results: The athletes had lowered lymphocyte proliferation capacity compared with sedentary volunteers either at rest or after the competitions. There was no difference in the parameters associated with lymphocyte death when sedentary volunteers were compared with triathletes at rest. Lymphocytes from triathletes after SDT competition showed an increase in DNA fragmentation, phosphatidylserine externalization, and mitochondrial transmembrane depolarization and did not alter membrane integrity when compared with cells from athletes at rest. In contrast, the LDT competition raised the proportion of lymphocytes with loss of membrane integrity when compared with cells from athletes at rest and did not change the apoptotic parameters. The LDT competition induced an increase of reactive oxygen species (ROS) production by lymphocytes compared with triathletes at rest. The SDT competition did not alter ROS production by lymphocytes when compared with cells from triathletes at rest. ROS production by lymphocytes after LDT competition was 60% higher than in SDT. Conclusions: Evidence is presented herein that an LDT competition caused lymphocyte death by necrosis, whereas an SDT induced lymphocyte apoptosis. The mechanism for lymphocyte death induced by the triathlon competitions may involve an increase in ROS production at different extents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different modes of cell death have been revealed in the regressing hypopharyngeal glands of worker honey bees. The hypopharyngeal gland, which is well developed in young nursing bees to produce protein for larval food, was seen to regress naturally in foraging adult worker bees. A range of techniques including histology, cytochemistry, in situ TUNEL, Annexin V and Comet assays indicated that cells within the gland demonstrate progressive symptoms of apoptosis, necrosis and a vacuolar form of programmed cell death. The latter mode of cell death did not display chromatin margination, but was accompanied by an enhanced level of autophagic and hydrolytic activity in which a cytosolic source of acid phosphatase became manifest in the extra-cisternal spaces. Normal and annexin-positive cells were found to occur in the younger nursing bees, whilst necrosis and an aberrant vacuolar type of apoptosis predominated in the older foraging bees. The relevance of these results to the classification of programmed cell death is discussed. (C) 2000 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death (PCD) plays a central role in the regulation of granulocytes that are key effector cells of the innate immune system. Granulocytes are produced in high amounts in the bone marrow. A safe elimination of granulocytes by cell death (apoptosis) is essential to maintain the numbers of these cells balanced. In many acute and chronic inflammatory diseases, delayed apoptosis is one mechanism that contributes to accumulation of neutrophil and eosinophil granulocytes at the site of inflammation. On the other hand, a safe elimination of granulocytes by cell death is required to avoid unwanted tissue damage for instance by secretion of toxic products from these cells. Recent evidence shows that humans produce an array of naturally occurring autoantibodies (NAbs) with the capacity to regulate granulocyte death, including agonistic and antagonistic NAbs that bind to the receptors Fas, Siglec-8, and Siglec-9. Together with other factors, these various NAbs exhibit different properties in terms of the form of cell death they induce, the molecular signaling pathways they engage, as well as the efficacy or potency by which they induce cell death. Moreover, several regulatory mechanisms seem to exist that control their biological activity. Novel insights support the concept of granulocyte death regulation by NAbs, which might have important implications for our understanding of the pathogenesis and treatment of inflammatory diseases, including many autoimmune and allergic disorders.