931 resultados para Programação de robôs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A seleção de pulverizadores agrícolas que se adaptem às necessidades da propriedade, é um processo trabalhoso, sendo uma das etapas mais importantes dentro do processo produtivo. O objetivo do presente trabalho foi o de desenvolver e utilizar um modelo de programação linear para auxiliar na seleção de pulverizadores agrícolas de barras, baseado no menor custo horário do equipamento. Foram utilizadas as informações técnicas referentes a 20 modelos de pulverizadores disponíveis no mercado, sendo quatro autopropelidos, oito de arrasto e oito do tipo montado. A análise de sensibilidade dos componentes dos custos operacionais mostrou que as taxas de reparo e depreciação foram os fatores que mais interferiram na variação do custo horário do conjunto trator-pulverizador. O modelo matemático desenvolvido facilitou a realização da análise de sensibilidade que foi processada em um tempo muito pequeno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the dynamic control problem of two-wheeled differentially driven non-holonomic mobile robot. Strategies for robot positioning control and robot orientating control are presented. Such strategies just require information about the robot con¯guration (x, y and teta), which can be collected by an absolute positioning system. The strategies development is related to a change on the controlled variables for such systems, from x, y and teta to s (denoting the robot linear displacement) and teta, and makes use of the polar coordinates representation for the robot kinematic model. Thus, it is possible to obtain a linear representation for the mobile robot dynamic model and to develop such strategies. It is also presented that such strategies allow the use of linear controllers to solve the control problem. It is shown that there is flexibility to choice the linear controller (P, PI, PID, Model Matching techniques, others) to be implemented. This work presents an introduction to mobile robotics and their characteristics followed by the control strategies development and controllers design. Finally, simulated and experimental results are presented and commented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho apresenta o desenvolvimento de um método de coordenação e cooperação para uma frota de mini-robôs móveis. O escopo do desenvolvimento é o futebol de robôs. Trata-se de uma plataforma bem estruturada, dinâmica e desenvolvida no mundo inteiro. O futebol de robôs envolve diversos campos do conhecimento incluindo: visão computacional, teoria de controle, desenvolvimento de circuitos microcontrolados, planejamento cooperativo, entre outros. A título de organização os sistema foi dividido em cinco módulos: robô, visão, localização, planejamento e controle. O foco do trabalho se limita ao módulo de planejamento. Para auxiliar seu desenvolvimento um simulador do sistema foi implementado. O simulador funciona em tempo real e substitui os robôs reais. Dessa forma os outros módulos permanecem praticamente inalterados durante uma simulação ou execução com robôs reais. Para organizar o comportamento dos robôs e produzir a cooperação entre eles foi adotada uma arquitetura hierarquizada: no mais alto nível está a escolha do estilo de jogo do time; logo abaixo decide-se o papel que cada jogador deve assumir; associado ao papel temos uma ação específica e finalmente calcula-se a referência de movimento do robô. O papel de um robô dita o comportamento do robô na dada ocasião. Os papéis são alocados dinamicamente durante o jogo de forma que um mesmo robô pode assumir diferentes papéis no decorrer da partida

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an online configurable multiplatform development environment specifically developed for educational robotics applications. The environment, which appears as an extension of RoboEduc software, allows the programming of several programmable robots to be performed using the R-Educ language. We make it possible for the user to program in the language R-Educ and then translate the code to a language previously registered, compiled and then sent or executed by the robot. To develop this work, we conducted a bibliographic research about the main programming languages used in robotics, as well as their definitions and paradigms, from which it was possible to define a set of patterns considered important for the creation of this environment. Then, in the software development phase, we implemented the development environment, bearing in mind the requirements and functionality defined in the design phase. Finally, to validate the platform, we conducted some trials of programming languages and verificate if the complete cycle was satisfied - registration of language, programming in R-Educ, compilation for the registered language, compilation to the machine code and send the code for the robot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Navigation based on visual feedback for robots, working in a closed environment, can be obtained settling a camera in each robot (local vision system). However, this solution requests a camera and capacity of local processing for each robot. When possible, a global vision system is a cheapest solution for this problem. In this case, one or a little amount of cameras, covering all the workspace, can be shared by the entire team of robots, saving the cost of a great amount of cameras and the associated processing hardware needed in a local vision system. This work presents the implementation and experimental results of a global vision system for mobile mini-robots, using robot soccer as test platform. The proposed vision system consists of a camera, a frame grabber and a computer (PC) for image processing. The PC is responsible for the team motion control, based on the visual feedback, sending commands to the robots through a radio link. In order for the system to be able to unequivocally recognize each robot, each one has a label on its top, consisting of two colored circles. Image processing algorithms were developed for the eficient computation, in real time, of all objects position (robot and ball) and orientation (robot). A great problem found was to label the color, in real time, of each colored point of the image, in time-varying illumination conditions. To overcome this problem, an automatic camera calibration, based on clustering K-means algorithm, was implemented. This method guarantees that similar pixels will be clustered around a unique color class. The obtained experimental results shown that the position and orientation of each robot can be obtained with a precision of few millimeters. The updating of the position and orientation was attained in real time, analyzing 30 frames per second

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes a method for 3D road extraction from a stereopair of aerial images. The dynamic programming (DP) algorithm is used to carry out the optimization process in the object-space, instead of usually doing it in the image-space such as the DP traditional methodologies. This means that road centerlines are directly traced in the object-space, implying that a mathematical relationship is necessary to connect road points in object and image-space. This allows the integration of radiometric information from images into the associate mathematical road model. As the approach depends on an initial approximation of each road, it is necessary a few seed points to coarsely describe the road. Usually, the proposed method allows good results to be obtained, but large anomalies along the road can disturb its performance. Therefore, the method can be used for practical application, although it is expected some kind of local manual edition of the extracted road centerline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work approaches the Scheduling Workover Rigs Problem (SWRP) to maintain the wells of an oil field, although difficult to resolve, is extremely important economical, technical and environmental. A mathematical formulation of this problem is presented, where an algorithmic approach was developed. The problem can be considered to find the best scheduling service to the wells by the workover rigs, taking into account the minimization of the composition related to the costs of the workover rigs and the total loss of oil suffered by the wells. This problem is similar to the Vehicle Routing Problem (VRP), which is classified as belonging to the NP-hard class. The goal of this research is to develop an algorithmic approach to solve the SWRP, using the fundamentals of metaheuristics like Memetic Algorithm and GRASP. Instances are generated for the tests to analyze the computational performance of the approaches mentioned above, using data that are close to reality. Thereafter, is performed a comparison of performance and quality of the results obtained by each one of techniques used

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, apresentamos uma ferramenta cujo intuito é auxiliar não-programadores, jogadores de videogame, na criação de extensões na forma de Add-ons para World of Warcraft, o jogo online. Nele, o usuário pode criar extensões customizando completamente sua interface, de forma a reinventar a sua experiência de jogo e melhorar sua jogabilidade. A criação de extensões para aplicativos e jogos surgiu da crescente necessidade de fornecer aos usuários mecanismos eficientes de Programação por Usuário Final, permitindo que os mesmos preenchessem suas necessidades singulares através da criação, customização e especificação de extensões em software. Em World of Warcraft mais especificamente, os Add-ons exploram um tipo de extensão na qual os jogadores passam a programar sua própria interface de usuário ou a fazer uso de interfaces criadas por outros usuários. No entanto, realizar a programação dessas extensões - os Add-ons - não é uma tarefa fácil. Dentro deste contexto, desenvolvemos a ferramenta EUPAT for WoW (do inglês, End-User Programming Assistance Tool for World of Warcraft) que oferece assistência à criação de Add-ons. Além disso, investigamos como usuários jogadores com e sem conhecimento de programação são beneficiados. Os resultados desta pesquisa permitiram refletir sobre as estratégias de assistência de programação por usuário final no contexto de jogos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New programming language paradigms have commonly been tested and eventually incorporated into hardware description languages. Recently, aspect-oriented programming (AOP) has shown successful in improving the modularity of object-oriented and structured languages such Java, C++ and C. Thus, one can expect that, using AOP, one can improve the understanding of the hardware systems under design, as well as make its components more reusable and easier to maintain. We apply AOP in applications developed using the SystemC library. Several examples will be presented illustrating how to combine AOP and SystemC. During the presentation of these examples, the benefits of this new approach will also be discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest of the Computer Science education community for including testing concepts on introductory programming courses. Aiming at contributing to this issue, we introduce POPT, a Problem-Oriented Programming and Testing approach for Introductory Programming Courses. POPT main goal is to improve the traditional method of teaching introductory programming that concentrates mainly on implementation and neglects testing. POPT extends POP (Problem Oriented Programing) methodology proposed on the PhD Thesis of Andrea Mendonça (UFCG). In both methodologies POPT and POP, students skills in dealing with ill-defined problems must be developed since the first programming courses. In POPT however, students are stimulated to clarify ill-defined problem specifications, guided by de definition of test cases (in a table-like manner). This paper presents POPT, and TestBoot a tool developed to support the methodology. In order to evaluate the approach a case study and a controlled experiment (which adopted the Latin Square design) were performed. In an Introductory Programming course of Computer Science and Software Engineering Graduation Programs at the Federal University of Rio Grande do Norte, Brazil. The study results have shown that, when compared to a Blind Testing approach, POPT stimulates the implementation of programs of better external quality the first program version submitted by POPT students passed in twice the number of test cases (professor-defined ones) when compared to non-POPT students. Moreover, POPT students submitted fewer program versions and spent more time to submit the first version to the automatic evaluation system, which lead us to think that POPT students are stimulated to think better about the solution they are implementing. The controlled experiment confirmed the influence of the proposed methodology on the quality of the code developed by POPT students