997 resultados para Processamento de Imagens
Resumo:
Given the widespread use of computers, the visual pattern recognition task has been automated in order to address the huge amount of available digital images. Many applications use image processing techniques as well as feature extraction and visual pattern recognition algorithms in order to identify people, to make the disease diagnosis process easier, to classify objects, etc. based on digital images. Among the features that can be extracted and analyzed from images is the shape of objects or regions. In some cases, shape is the unique feature that can be extracted with a relatively high accuracy from the image. In this work we present some of most important shape analysis methods and compare their performance when applied on three well-known shape image databases. Finally, we propose the development of a new shape descriptor based on the Hough Transform.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
A presença da Medicina Nuclear como modalidade de obtenção de imagens médicas é um dos principais procedimentos utilizados hoje nos centros de saúde, tendo como grande vantagem a capacidade de analisar o comportamento metabólico do paciente, traduzindo-se em diagnósticos precoces. Entretanto, sabe-se que a quantificação em Medicina Nuclear é dificultada por diversos fatores, entre os quais estão a correção de atenuação, espalhamento, algoritmos de reconstrução e modelos assumidos. Neste contexto, o principal objetivo deste projeto foi melhorar a acurácia e a precisão na análise de imagens de PET/CT via processos realísticos e bem controlados. Para esse fim, foi proposta a elaboração de uma estrutura modular, a qual está composta por um conjunto de passos consecutivamente interligados começando com a simulação de phantoms antropomórficos 3D para posteriormente gerar as projeções realísticas PET/CT usando a plataforma GATE (com simulação de Monte Carlo), em seguida é aplicada uma etapa de reconstrução de imagens 3D, na sequência as imagens são filtradas (por meio do filtro de Anscombe/Wiener para a redução de ruído Poisson caraterístico deste tipo de imagens) e, segmentadas (baseados na teoria Fuzzy Connectedness). Uma vez definida a região de interesse (ROI) foram produzidas as Curvas de Atividade de Entrada e Resultante requeridas no processo de análise da dinâmica de compartimentos com o qual foi obtida a quantificação do metabolismo do órgão ou estrutura de estudo. Finalmente, de uma maneira semelhante imagens PET/CT reais fornecidas pelo Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP) foram analisadas. Portanto, concluiu-se que a etapa de filtragem tridimensional usando o filtro Anscombe/Wiener foi relevante e de alto impacto no processo de quantificação metabólica e em outras etapas importantes do projeto em geral.
Resumo:
Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.
Resumo:
O objetivo deste trabalho é prover um aplicativo de celular e um protocolo para aquisição de imagens para contagem dos ovos de Aedes aegypti com as seguintes características: facilidade de uso, alta acurácia e custo baixo. O mosquito Ae. aegypti, popularmente conhecido como mosquito da dengue, é um importante vetor de arboviroses como a própria dengue, a chikungunya, a zika e a febre amarela em seu ciclo urbano. O monitoramento entomológico é uma maneira de melhorar a capacidade de predição e na detecção precoce de epidemias das doenças mencionadas. Este monitoramento é majoritariamente baseado no índice larvário, o qual lista a quantidade de casas infectadas, ou a quantidade de ovos de Aedes coletados em palhetas em ovitrampas. Estas palhetas são normalmente de eucatex, mas existem pesquisas atuais testando o algodão.A contagem dos ovos coletados em ovitrampas é feita manualmente, a qual demanda tempo, profissionais qualificados para o manuseio de equipamento laboratorial (lupas e microscópios) e conhecimento entomológico. Buscou-se criar um método para acelerar o trabalho feito pelos profissionais em controle entomológico. A metodologia contou com a criação de um aplicativo e com um processo de contagem dos ovos, o qual consiste em quatro passos: a) Fotografar as palhetas em ovitrampas utilizando de uma câmera de celular; b) Transformar as fotos em uma imagem binarizada, removendo todos os elementos que não são ovos; c) Contar a área de cada elemento; d) A partir do uso de um classificador especialmente desenvolvido, estimar a quantidade de ovos baseado na área de cada elemento. Nos resultados, foi possível notar que houve uma disparidade na contagem de ovos em palhetas de algodão, a qual teve um erro médio próximo a zero, em relação às palhetas de eucatex, as quais tiveram erro médio acima de 5\%. Dos pontos mais importantes das conclusões, destacam-se a possibilidade de melhoria contínua do aplicativo por permanecer na nuvem, com possibilidade de avanços conforme novas descobertas, assim como o excelente custo-benefício obtido, por conseguir operar com baixo custo monetário.
Resumo:
This work presents an analysis of the behavior of some algorithms usually available in stereo correspondence literature, with full HD images (1920x1080 pixels) to establish, within the precision dilemma versus runtime applications which these methods can be better used. The images are obtained by a system composed of a stereo camera coupled to a computer via a capture board. The OpenCV library is used for computer vision operations and processing images involved. The algorithms discussed are an overall method of search for matching blocks with the Sum of the Absolute Value of the difference (Sum of Absolute Differences - SAD), a global technique based on cutting energy graph cuts, and a so-called matching technique semi -global. The criteria for analysis are processing time, the consumption of heap memory and the mean absolute error of disparity maps generated.
Resumo:
Nowadays, the amount of customers using sites for shopping is greatly increasing, mainly due to the easiness and rapidity of this way of consumption. The sites, differently from physical stores, can make anything available to customers. In this context, Recommender Systems (RS) have become indispensable to help consumers to find products that may possibly pleasant or be useful to them. These systems often use techniques of Collaborating Filtering (CF), whose main underlying idea is that products are recommended to a given user based on purchase information and evaluations of past, by a group of users similar to the user who is requesting recommendation. One of the main challenges faced by such a technique is the need of the user to provide some information about her preferences on products in order to get further recommendations from the system. When there are items that do not have ratings or that possess quite few ratings available, the recommender system performs poorly. This problem is known as new item cold-start. In this paper, we propose to investigate in what extent information on visual attention can help to produce more accurate recommendation models. We present a new CF strategy, called IKB-MS, that uses visual attention to characterize images and alleviate the new item cold-start problem. In order to validate this strategy, we created a clothing image database and we use three algorithms well known for the extraction of visual attention these images. An extensive set of experiments shows that our approach is efficient and outperforms state-of-the-art CF RS.
Resumo:
In this work, spoke about the importance of image compression for the industry, it is known that processing and image storage is always a challenge in petrobrás to optimize the storage time and store a maximum number of images and data. We present an interactive system for processing and storing images in the wavelet domain and an interface for digital image processing. The proposal is based on the Peano function and wavelet transform in 1D. The storage system aims to optimize the computational space, both for storage and for transmission of images. Being necessary to the application of the Peano function to linearize the images and the 1D wavelet transform to decompose it. These applications allow you to extract relevant information for the storage of an image with a lower computational cost and with a very small margin of error when comparing the images, original and processed, ie, there is little loss of quality when applying the processing system presented . The results obtained from the information extracted from the images are displayed in a graphical interface. It is through the graphical user interface that the user uses the files to view and analyze the results of the programs directly on the computer screen without the worry of dealing with the source code. The graphical user interface, programs for image processing via Peano Function and Wavelet Transform 1D, were developed in Java language, allowing a direct exchange of information between them and the user
Resumo:
A utilização generalizada do computador para a automatização das mais diversas tarefas, tem conduzido ao desenvolvimento de aplicações que possibilitam a realização de actividades que até então poderiam não só ser demoradas, como estar sujeitas a erros inerentes à actividade humana. A investigação desenvolvida no âmbito desta tese, tem como objectivo o desenvolvimento de um software e algoritmos que permitam a avaliação e classificação de queijos produzidos na região de Évora, através do processamento de imagens digitais. No decurso desta investigação, foram desenvolvidos algoritmos e metodologias que permitem a identificação dos olhos e dimensões do queijo, a presença de textura na parte exterior do queijo, assim como características relativas à cor do mesmo, permitindo que com base nestes parâmetros possa ser efectuada uma classificação e avaliação do queijo. A aplicação de software, resultou num produto de simples utilização. As fotografias devem respeitar algumas regras simples, sobre as quais se efectuará o processamento e classificação do queijo. ABSTRACT: The widespread use of computers for the automation of repetitive tasks, has resulted in developing applications that allow a range of activities, that until now could not only be time consuming and also subject to errors inherent to human activity, to be performed without or with little human intervention. The research carried out within this thesis, aims to develop a software application and algorithms that enable the assessment and classification of cheeses produced in the region of Évora, by digital images processing. Throughout this research, algorithms and methodologies have been developed that allow the identification of the cheese eyes, the dimensions of the cheese, the presence of texture on the outside of cheese, as well as an analysis of the color, so that, based on these parameters, a classification and evaluation of the cheese can be conducted. The developed software application, is product simple to use, requiring no special computer knowledge. Requires only the acquisition of the photographs following a simple set of rules, based on which it will do the processing and classification of cheese.
Resumo:
O levantamento e a análise da espacialização dos atributos do solo através de ferramentas de geoestatística são fundamentais para que cada hectare de terra seja cultivado segundo as suas reais aptidões. As imagens de radar de abertura sintética (SAR) têm um grande potencial para a estimação de umidade do solo e, desta forma, estes sensores podem auxiliar no mapeamento de propriedades físicas e físico-hídricas dos solos. O objetivo geral deste estudo foi avaliar o potencial de utilização de imagens de radar (micro-ondas) ALOS/PALSAR na identificação de solos em uma área da Formação Botucatu, dominada por solos de textura arenosa e média no município de Mineiros - GO. A área tem aproximadamente 946 ha, com o relevo da região variando de plano a suave ondulado e geologia da área é composta basicamente, por Arenitos da Formação Botucatu. No presente estudo foram amostrados 84 pontos para calibração e 25 pontos para validação, coletados nas profundidades de 0-20 cm e 60-80 cm. As amostras de solo analisadas para a determinação de areia, silte, argila, capacidade de campo (CC), ponto de murcha permanente (PMP) e água total disponível (AD). Para o desenvolvimento do trabalho foram adquiridas imagens de cinco datas e diferentes polarizações, totalizando 14 imagens, que foram processadas para a correção geométrica e correção radiométrica, utilizando o MDE. Também foram gerados covariáveis dos atributos do terreno: elevação (ELEV), declividade (DECLIV), posição relativa da declividade (PR-DECL), distância vertical do canal de drenagem (DVCD), fator-ls (FATOR-LS) e distância euclidiana (D-EUCL). A predição dos atributos do solo foi realizada utilizando os métodos Random Forest (RF) e Random Forest Krigagem (RFK), tendo como covariáveis preditoras as imagens de radar e os atributos do terreno. O processamento das imagens do radar ALOS/PALSAR possibilitou as correções geométrica e radiométrica, transformando os dados em unidades de coeficiente de retroespalhamento (?º) corrigidos pelo modelo digital de elevação (MDE). As imagens adquiridas representaram de forma ampla as variações de ?º ocorridos em diferentes datas. Os solos da área de estudo são predominantemente arenosos, com a maioria dos pontos amostrados classificados como NEOSSOLOS QUARTZARÊNICOS, seguidos dos LATOSSOLOS. Os modelos RF empregados para a predição dos atributos físicos e físico-hídricos dos solos proporcionaram a análise da contribuição das covariáveis preditoras. Os atributos do terreno que exerceram maior influência na predição dos atributos estudados estão relacionados à elevação. As imagens de 03/05/2009 (HH1, VV1, HV1 e VH1) e 26/09/2010 (HH3 e HV3), obtidas em períodos mais secos, tiveram melhores correlações com os atributos do solo. As análises dos semivariogramas dos resíduos da predição dos modelos RF demonstraram maior dependência espacial na camada de 60 a 80 cm. A abordagem da Krigagem somada ao modelo RF contribuíram para a melhoria da predição dos atributos areia, argila, CC e PMP. O uso de imagens de radar ALOS/PALSAR e atributos do terreno como covariáveis em modelos RFK mostrou potencial para estimar os atributos físicos (areia e argila) e físico-hídricos (CC e PMP), que podem auxiliar no mapeamento de solos associados aos materiais de origem da Formação Botucatu.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física