1000 resultados para Process optimizations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent efforts in the characterization of air-water flows properties have included some clustering process analysis. A cluster of bubbles is defined as a group of two or more bubbles, with a distinct separation from other bubbles before and after the cluster. The present paper compares the results of clustering processes two hydraulic structures. That is, a large-size dropshaft and a hydraulic jump in a rectangular horizontal channel. The comparison highlighted some significant differences in clustering production and structures. Both dropshaft and hydraulic jump flows are complex turbulent shear flows, and some clustering index may provide some measure of the bubble-turbulence interactions and associated energy dissipation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business process design is primarily driven by process improvement objectives. However, the role of control objectives stemming from regulations and standards is becoming increasingly important for businesses in light of recent events that led to some of the largest scandals in corporate history. As organizations strive to meet compliance agendas, there is an evident need to provide systematic approaches that assist in the understanding of the interplay between (often conflicting) business and control objectives during business process design. In this paper, our objective is twofold. We will firstly present a research agenda in the space of business process compliance, identifying major technical and organizational challenges. We then tackle a part of the overall problem space, which deals with the effective modeling of control objectives and subsequently their propagation onto business process models. Control objective modeling is proposed through a specialized modal logic based on normative systems theory, and the visualization of control objectives on business process models is achieved procedurally. The proposed approach is demonstrated in the context of a purchase-to-pay scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, business process design has been driven by business objectives, specifically process improvement. However this cannot come at the price of control objectives which stem from various legislative, standard and business partnership sources. Ensuring the compliance to regulations and industrial standards is an increasingly important issue in the design of business processes. In this paper, we advocate that control objectives should be addressed at an early stage, i.e., design time, so as to minimize the problems of runtime compliance checking and consequent violations and penalties. To this aim, we propose supporting mechanisms for business process designers. This paper specifically presents a support method which allows the process designer to quantitatively measure the compliance degree of a given process model against a set of control objectives. This will allow process designers to comparatively assess the compliance degree of their design as well as be better informed on the cost of non-compliance.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive research program focused on the characterization of various metallurgical complex smelting and coal combustion slags is being undertaken. The research combines both experimental and thermodynamic modeling studies. The approach is illustrated by work on the PbO-ZnO-Al2O3-FeO-Fe2O3-CaO-SiO2 system. Experimental measurements of the liquidus and solidus have been undertaken under oxidizing and reducing conditions using equilibration, quenching, and electron probe X-ray microanalysis. The experimental program has been planned so as to obtain data for thermodynamic model development as well as for pseudo-ternary Liquidus diagrams that can be used directly by process operators. Thermodynamic modeling has been carried out using the computer system FACT, which contains thermodynamic databases with over 5000 compounds and evaluated solution models. The FACT package is used for the calculation of multiphase equilibria in multicomponent systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New optimizations have been carried out, which significantly improve the accuracy of the thermodynamic models for lead/zinc smelting and coal combustion processes. Examples of experimentally determined and calculated liquidus diagrams are presented. These examples provide information of direct relevance to various metallurgical smelting and coal combustion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some diverse indicators used to measure the innovation process are considered, They include those with art aggregate, and often national, focus, and rely on data from scientific publications, patents and R&D expenditures, etc. Others have a firm-level perspective, relying primarily on surveys or case studies. Also included are indicators derived from specialized databases, or consensual agreements reached through foresight exercises. There is an obvious need for greater integration of the various approaches to capture move effectively the richness of available data and better reflect the reality of innovation. The focus for such integration could be in the area of technology strategy, which integrates the diverse scientific, technological, and innovation activities of firms within their operating environments; improved capacity to measure it has implications for policy-makers, managers and researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simultaneous design of the steady-state and dynamic performance of a process has the ability to satisfy much more demanding dynamic performance criteria than the design of dynamics only by the connection of a control system. A method for designing process dynamics based on the use of a linearised systems' eigenvalues has been developed. The eigenvalues are associated with system states using the unit perturbation spectral resolution (UPSR), characterising the dynamics of each state. The design method uses a homotopy approach to determine a final design which satisfies both steady-state and dynamic performance criteria. A highly interacting single stage forced circulation evaporator system, including control loops, was designed by this method with the goal of reducing the time taken for the liquid composition to reach steady-state. Initially the system was successfully redesigned to speed up the eigenvalue associated with the liquid composition state, but this did not result in an improved startup performance. Further analysis showed that the integral action of the composition controller was the source of the limiting eigenvalue. Design changes made to speed up this eigenvalue did result in an improved startup performance. The proposed approach provides a structured way to address the design-control interface, giving significant insight into the dynamic behaviour of the system such that a systematic design or redesign of an existing system can be undertaken with confidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to simulate the rock alteration and metamorphic process in hydrothermal systems. In particular, we consider the fluid-rock interaction problems in pore-fluid saturated porous rocks. Since the fluid rock interaction takes place at the contact interface between the pore-fluid and solid minerals, it is governed by the chemical reaction which usually takes place very slowly at this contact interface, from the geochemical point of view. Due to the relative slowness of the rate of the chemical reaction to the velocity of the pore-fluid flow in the hydrothermal system to be considered, there exists a retardation zone, in which the conventional static theory in geochemistry does not hold true. Since this issue is often overlooked by some purely numerical modellers, it is emphasized in this paper. The related results from a typical rock alteration and metamorphic problem in a hydrothermal system have shown not only the detailed rock alteration and metamorphic process, but also the size of the retardation zone in the hydrothermal system. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador: