952 resultados para Process Formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of blood vessel maturation into distinct parts of the blood vasculature such as arteries, veins, and capillaries have been the subject of intense investigation over recent years. In contrast, our knowledge of lymphatic vessel maturation is still fragmentary. In this study, we provide a molecular and morphological characterization of the major steps in the maturation of the primary lymphatic capillary plexus into collecting lymphatic vessels during development and show that forkhead transcription factor Foxc2 controls this process. We further identify transcription factor NFATc1 as a novel regulator of lymphatic development and describe a previously unsuspected link between NFATc1 and Foxc2 in the regulation of lymphatic maturation. We also provide a genome-wide map of FOXC2-binding sites in lymphatic endothelial cells, identify a novel consensus FOXC2 sequence, and show that NFATc1 physically interacts with FOXC2-binding enhancers. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NK cell function is regulated by a dual receptor system, which integrates signals from triggering receptors and MHC class I-specific inhibitory receptors. We show here that the src family kinase Fyn is required for efficient, NK cell-mediated lysis of target cells, which lack both self-MHC class I molecules and ligands for NKG2D, an activating NK cell receptor. In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A was independent of Fyn, suggesting that Fyn is specifically required for NK cell activation via non-MHC receptor(s). Compared to wild type, significantly fewer Fyn-deficient NK cells expressed the inhibitory Ly49A receptor. The presence of a transgenic Ly49A receptor together with its H-2(d) ligand strongly reduced the usage of endogenous Ly49 receptors in Fyn-deficient mice. These data suggest a model in which the repertoire of inhibitory Ly49 receptors is formed under the influenced of Fyn-dependent NK cell activation as well as the respective MHC class I environment. NK cells may acquire Ly49 receptors until they generate sufficient inhibitory signals to balance their activation levels. Such a process would ensure the induction of NK cell self-tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new hypothesis is formulated to explain the development of rapakivi texture in and around the mafic enclaves of porphyritic granitoids, i.e. in environments involving magma mixing and mingling. The formation of a plagioclase mantle around alkali feldspar megacrysts is attributed to the localized presence of a melt resulting from the reaction of these megacrysts, with host hybrid magma with which they are in disequilibrium. This feldspathic melt adheres to the resorbed crystals and is virtually immiscible with the surrounding magma. Its composition is modified in terms of the relative proportions of K2O, Na2O, and CaO through selective diffusion of these elements, thus allowing the specific crystallization of andesine. With decreasing temperature, the K-feldspar, again stable, crystallizes along with the plagioclase, leading to mixed mantle structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metasomatism observed in the oceanic and continental lithosphere is generally interpreted to represent a continuous differentiation process forming anhydrous and hydrous veins plus a cryptic enrichment in the surrounding peridotite. In order to constrain the mechanisms of vein formation and potentially clarify the nature and origin of the initial metasomatic agent, we performed a series of high-pressure experiments simulating the liquid line of descent of a basanitic magma differentiating within continental or mature oceanic lithosphere. This series of experiments has been conducted in an end-loaded piston cylinder apparatus starting from an initial hydrous ne-normative basanite at 1.5 GPa and temperature varying between 1,250 and 980°C. Near-pure fractional crystallization process was achieved in a stepwise manner in 30°C temperature steps and starting compositions corresponding to the liquid composition of the previous, higher-temperature glass composition. Liquids evolve progressively from basanite to peralkaline, aluminum-rich compositions without significant SiO2 variation. The resulting cumulates are characterized by an anhydrous clinopyroxene + olivine assemblage at high temperature (1,250-1,160°C), while at lower temperature (1,130-980°C), hydrous cumulates with dominantly amphibole + minor clinopyroxene, spinel, ilmenite, titanomagnetite and apatite (1,130-980°C) are formed. This new data set supports the interpretation that anhydrous and hydrous metasomatic veins could be produced during continuous differentiation processes of primary, hydrous alkaline magmas at high pressure. However, the comparison between the cumulates generated by the fractional crystallization from an initial ne-normative liquid or from hy-normative initial compositions (hawaiite or picrobasalt) indicates that for all hydrous liquids, the different phases formed upon differentiation are mostly similar even though the proportions of hydrous versus anhydrous minerals could vary significantly. This suggests that the formation of amphibole-bearing metasomatic veins observed in the lithospheric mantle could be linked to the differentiation of initial liquids ranging from ne-normative to hy-normative in composition. The present study does not resolve the question whether the metasomatism observed in lithospheric mantle is a precursor or a consequence of alkaline magmatism; however, it confirms that the percolation and differentiation of a liquid produced by a low degree of partial melting of a source similar or slightly more enriched than depleted MORB mantle could generate hydrous metasomatic veins interpreted as a potential source for alkaline magmatism by various authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My interest in higher education and citizenship in the Middle East at large and in Jordan in particular is fostered by some of the reflections Eickelman proposed (1992). Being a quite recent phenomenon, intimately linked with the more general topic of state formation it seemed to me more suitable to study it in a little country with a recent history (a field study left almost unexplored until now as far as Jordan is concerned, to the best of my knowledge, since Antoun 1994 focuses on the migration as a quest for higher education). The process of state formation in Jordan is quite studied. I thus intended to study the higher education policies as an attempt both to create a national citizenry and more recently as a way of controlling the more problematic part of the population (youth, which constitutes more than the double of the population. See UNDP and Ministry of Planning 2000). How do the young students enter the university system, and in which way does this system work? How is this system designed, in order to retain social control of the students (since they are usually perceived to be a factor of social and political instability, as in Iran or in Egypt)? Is there any significant difference between different faculties? And if so, why? My conclusions at this stage are that the university system is an integral part of the survival of the regime. The system works quite well, and Jordan has one of the best educational position in the region. Yet there are important distinctions to be made: the access to the better faculties is socially selective while the less valued faculties are left to the poorer and less wealthy youth. This results in a different treatment of the students and of the courses that I analysed. In the better faculties the teaching standards are quite high, and the relationship between professors and students is almost on a same-level base, while in the less privileged faculties the opposite is true. Thus we can observe a concrete politics of divide et impera intended to split the youth in two. For the more privileged there are some freedoms, both within and outside classes, designed I guess at forging them as autonomous individuals. On the opposite the less privileged are kept under tight control, even if also these students are a privileged category among youth at large.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that this metalloid promotes protein misfolding. Using in vivo and in vitro assays, we show that proteins in the process of synthesis/folding are particularly sensitive to arsenite-induced aggregation, that arsenite interferes with protein folding by acting on unfolded polypeptides, and that arsenite directly inhibits chaperone activity. Thus, folding inhibition contributes to arsenite toxicity in two ways: by aggregate formation and by chaperone inhibition. Importantly, arsenite-induced protein aggregates can act as seeds committing other, labile proteins to misfold and aggregate. Our findings describe a novel mechanism of toxicity that may explain the suggested role of this metalloid in the etiology and pathogenesis of protein folding disorders associated with arsenic poisoning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host's immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factors act in concert to induce lineage commitment towards Th1, Th2, or T regulatory (Treg) cells, and their counter-regulatory mechanisms were shown to be critical for polarization between Th1 and Th2 phenotypes. FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression are as yet unknown. We describe a mechanism controlling iTreg polarization, which is overruled by the Th2 differentiation pathway. We demonstrated that interleukin 4 (IL-4) present at the time of T cell priming inhibits FOXP3. This inhibitory mechanism was also confirmed in Th2 cells and in T cells of transgenic mice overexpressing GATA-3 in T cells, which are shown to be deficient in transforming growth factor (TGF)-beta-mediated FOXP3 induction. This inhibition is mediated by direct binding of GATA3 to the FOXP3 promoter, which represses its transactivation process. Therefore, this study provides a new understanding of tolerance development, controlled by a type 2 immune response. IL-4 treatment in mice reduces iTreg cell frequency, highlighting that therapeutic approaches that target IL-4 or GATA3 might provide new preventive strategies facilitating tolerance induction particularly in Th2-mediated diseases, such as allergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CM) for cardiac regeneration is hampered by the formation of fibrotic tissue around the grafts, preventing electrophysiological coupling. Investigating this process, we found that: (1) beating hESC-CM in vitro are embedded in collagens, laminin and fibronectin, which they bind via appropriate integrins; (2) after transplantation into the mouse heart, hESC-CM continue to secrete collagen IV, XVIII and fibronectin; (3) integrin expression on hESC-CM largely matches the matrix type they encounter or secrete in vivo; (4) co-transplantation of hESC-derived endothelial cells and/or cardiac progenitors with hESC-CM results in the formation of functional capillaries; and (5) transplanted hESC-CM survive and mature in vivo for at least 24 weeks. These results form the basis of future developments aiming to reduce the adverse fibrotic reaction that currently complicates cell-based therapies for cardiac disease, and to provide an additional clue towards successful engraftment of cardiomyocytes by co-transplanting endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.