457 resultados para Probabilité de couverture
Resumo:
L’objectif de ce papier est de déterminer les facteurs susceptibles d’expliquer les faillites bancaires au sein de l’Union économique et monétaire ouest-africaine (UEMOA) entre 1980 et 1995. Utilisant le modèle logit conditionnel sur des données en panel, nos résultats montrent que les variables qui affectent positivement la probabilité de faire faillite des banques sont : i) le niveau d’endettement auprès de la banque centrale; ii) un faible niveau de comptes disponibles et à vue; iii) les portefeuilles d’effets commerciaux par rapport au total des crédits; iv) le faible montant des dépôts à terme de plus de 2 ans à 10 ans par rapport aux actifs totaux; et v) le ratio actifs liquides sur actifs totaux. En revanche, les variables qui contribuent positivement sur la vraisemblance de survie des banques sont les suivantes : i) le ratio capital sur actifs totaux; ii) les bénéfices nets par rapport aux actifs totaux; iii) le ratio crédit total sur actifs totaux; iv) les dépôts à terme à 2 ans par rapport aux actifs totaux; et v) le niveau des engagements sous forme de cautions et avals par rapport aux actifs totaux. Les ratios portefeuilles d’effets commerciaux et actifs liquides par rapport aux actifs totaux sont les variables qui expliquent la faillite des banques commerciales, alors que ce sont les dépôts à terme de plus de 2 ans à 10 ans qui sont à l’origine des faillites des banques de développement. Ces faillites ont été considérablement réduites par la création en 1989 de la commission de réglementation bancaire régionale. Dans l’UEMOA, seule la variable affectée au Sénégal semble contribuer positivement sur la probabilité de faire faillite.
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
We consider a probabilistic approach to the problem of assigning k indivisible identical objects to a set of agents with single-peaked preferences. Using the ordinal extension of preferences, we characterize the class of uniform probabilistic rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in this characterization no-envy cannot be replaced by anonymity. When agents are strictly risk averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of assigning k identical objects to a problem of allocating the amount k of an infinitely divisible commodity.
Resumo:
Previous studies on the determinants of the choice of college major have assumed a constant probability of success across majors or a constant earnings stream across majors. Our model disregards these two restrictive assumptions in computing an expected earnings variable to explain the probability that a student will choose a specific major among four choices of concentrations. The construction of an expected earnings variable requires information on the student s perceived probability of success, the predicted earnings of graduates in all majors and the student s expected earnings if he (she) fails to complete a college program. Using data from the National Longitudinal Survey of Youth, we evaluate the chances of success in all majors for all the individuals in the sample. Second, the individuals' predicted earnings of graduates in all majors are obtained using Rumberger and Thomas's (1993) regression estimates from a 1987 Survey of Recent College Graduates. Third, we obtain idiosyncratic estimates of earnings alternative of not attending college or by dropping out with a condition derived from our college major decision-making model applied to our sample of college students. Finally, with a mixed multinominal logit model, we explain the individuals' choice of a major. The results of the paper show that the expected earnings variable is essential in the choice of a college major. There are, however, significant differences in the impact of expected earnings by gender and race.
Resumo:
This article studies mobility patterns of German workers in light of a model of sector-specific human capital. Furthermore, I employ and describe little-used data on continuous on-the-job training occurring after apprenticeships. Results are presented describing the incidence and duration of continuous training. Continuous training is quite common, despite the high incidence of apprenticeships which precedes this part of a worker's career. Most previous studies have only distinguished between firm-specific and general human capital, usually concluding that training was general. Inconsistent with those conclusions, I show that German men are more likely to find a job within the same sector if they have received continuous training in that sector. These results are similar to those obtained for young U.S. workers, and suggest that sector-specific capital is an important feature of very different labor markets. In addition, they suggest that the observed effect of training on mobility is sensible to the state of the business cycle, indicating a more complex interaction between supply and demand that most theoretical models allow for.
Resumo:
Using data from the National Longitudinal Survey of Youth (NLSY), we re-examine the effect of formal on-the-job training on mobility patterns of young American workers. By employing parametric duration models, we evaluate the economic impact of training on productive time with an employer. Confirming previous studies, we find a positive and statistically significant impact of formal on-the-job training on tenure with the employer providing the training. However, the expected net duration of the time spent in the training program is generally not significantly increased. We proceed to document and analyze intra-sectoral and cross-sectoral mobility patterns in order to infer whether training provides firm-specific, industry-specific, or general human capital. The econometric analysis rejects a sequential model of job separation in favor of a competing risks specification. We find significant evidence for the industry-specificity of training. The probability of sectoral mobility upon job separation decreases with training received in the current industry, whether with the last employer or previous employers, and employment attachment increases with on-the-job training. These results are robust to a number of variations on the base model.
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
Cet article illustre l’applicabilité des méthodes de rééchantillonnage dans le cadre des tests multiples (simultanés), pour divers problèmes économétriques. Les hypothèses simultanées sont une conséquence habituelle de la théorie économique, de sorte que le contrôle de la probabilité de rejet de combinaisons de tests est un problème que l’on rencontre fréquemment dans divers contextes économétriques et statistiques. À ce sujet, on sait que le fait d’ignorer le caractère conjoint des hypothèses multiples peut faire en sorte que le niveau de la procédure globale dépasse considérablement le niveau désiré. Alors que la plupart des méthodes d’inférence multiple sont conservatrices en présence de statistiques non-indépendantes, les tests que nous proposons visent à contrôler exactement le niveau de signification. Pour ce faire, nous considérons des critères de test combinés proposés initialement pour des statistiques indépendantes. En appliquant la méthode des tests de Monte Carlo, nous montrons comment ces méthodes de combinaison de tests peuvent s’appliquer à de tels cas, sans recours à des approximations asymptotiques. Après avoir passé en revue les résultats antérieurs sur ce sujet, nous montrons comment une telle méthodologie peut être utilisée pour construire des tests de normalité basés sur plusieurs moments pour les erreurs de modèles de régression linéaires. Pour ce problème, nous proposons une généralisation valide à distance finie du test asymptotique proposé par Kiefer et Salmon (1983) ainsi que des tests combinés suivant les méthodes de Tippett et de Pearson-Fisher. Nous observons empiriquement que les procédures de test corrigées par la méthode des tests de Monte Carlo ne souffrent pas du problème de biais (ou sous-rejet) souvent rapporté dans cette littérature – notamment contre les lois platikurtiques – et permettent des gains sensibles de puissance par rapport aux méthodes combinées usuelles.