940 resultados para Premixed Flame Ball
Resumo:
Three dimensional, fully compressible direct numerical simulations (DNS) of premixed turbulent flames are carried out in a V-flame configuration. The governing equations and the numerical implementation are described in detail, including modifications made to the Navier-Stokes Characteristic Boundary Conditions (NSCBC) to accommodate the steep transverse velocity and composition gradients generated when the flame crosses the boundary. Three cases, at turbulence intensities, u′/sL, of 1, 2, and 6 are considered. The influence of the flame holder on downstream flame properties is assessed through the distributions of the surface-conditioned displacement speed, curvature and tangential strain rates, and compared to data from similarly processed planar flames. The distributions are found to be indistinguishable from planar flames for distances greater than about 17δth downstream of the flame holder, where δth is the laminar flame thermal thickness. Favre mean fields are constructed, and the growth of the mean flame brush is found to be well described by simple Taylor type diffusion. The turbulent flame speed, sT is evaluated from an expression describing the propagation speed of an isosurface of the mean reaction progress variable c̃ in terms of the imbalance between the mean reactive, diffusive, and turbulent fluxes within the flame brush. The results are compared to the consumption speed, sC, calculated from the integral of the mean reaction rate, and to the predictions of a recently developed flame speed model (Kolla et al., Combust Sci Technol 181(3):518-535, 2009). The model predictions are improved in all cases by including the effects of mean molecular diffusion, and the overall agreement is good for the higher turbulence intensity cases once the tangential convective flux of c̃ is taken into account. © 2010 Springer Science+Business Media B.V.
Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame
Resumo:
The geometric alignment of turbulent strain-rate structures with premixed flames greatly influences the results of the turbulence-flame interaction. Here, the statistics and dynamics of this alignment are experimentally investigated in turbulent premixed Bunsen flames using high-repetition-rate stereoscopic particle image velocimetry. In all cases, the statistics showed that the most extensive principal strain-rate associated with the turbulence preferentially aligned such that it was more perpendicular than parallel to the flame surface normal direction. The mean turbulence-flame alignment differed between the flames, with the stronger flames (higher laminar flame speed) exhibiting stronger preferential alignment. Furthermore, the preferential alignment was greatest on the reactant side of the mean flame brush. To understand these differences, individual structures of fluid-dynamic strain-rate were tracked through time in a Lagrangian manner (i.e., by following the fluid elements). It was found that the flame surface affected the orientation of the turbulence structures, with the majority of structures rotating as they approached the flame such that their most extensive principal strain-rate was perpendicular to the flame normal. The maximum change in turbulent structure orientation was found to decrease with the strength of the structure, increase with the strength of the flame, and exhibit similar trends when the structure strength and flame strength were represented by a Karlovitz number. The mean change in orientation decreased from the unburnt to burnt side of the flame brush and appears to be influenced by the overall flame shape. © 2011 The Combustion Institute.
Resumo:
Multiple flame-flame interactions in premixed combustion are investigated using direct numerical simulations of twin turbulent V-flames for a range of turbulence intensities and length scales. Interactions are identified using a novel automatic feature extraction (AFE) technique, based on data registration using the dual-tree complex wavelet transform. Information on the time, position, and type of interactions, and their influence on the flame area is extracted using AFE. Characteristic length and time scales for the interactions are identified. The effect of interactions on the flame brush is quantified through a global stretch rate, defined as the sum of flamelet stretch and interaction stretch contributions. The effects of each interaction type are discussed. It is found that the magnitude of the fluctuations in flamelet and interaction stretch are comparable, and a qualitative sensitivity to turbulence length scale is found for one interaction type. Implications for modeling are discussed. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The flame surface density approach to the modeling of premixed turbulent combustion is well established in the context of Reynolds-averaged simulations. For the future, it is necessary to consider large-eddy simulation (LES), which is likely to offer major advantages in terms of physical accuracy, particularly for unsteady combustion problems. LES relies on spatial filtering for the removal of unresolved phenomena whose characteristic length scales are smaller than the computational grid scale. Thus, there is a need for soundly based physical modeling at the subgrid scales. The aim of this paper is to explore the usefulness of the flame surface density concept as a basis for LES modeling of premixed turbulent combustion. A transport equation for the filtered flame surface density is presented, and models are proposed for unclosed terms. Comparison with Reynolds-averaged modeling is shown to reveal some interesting similarities and differences. These were exploited together with known physics and statistical results from experiment and from direct numerical stimulation in order to gain insight and refine the modeling. The model has been implemented in a combustion LES code together with standard models for scalar and momentum transport. Computational results were obtained for a simple three-dimensional flame propagation test problem, and the relative importance of contributing terms in the modeled equation for flame surface density was assessed. Straining and curvature are shown to have a major influence at both the resolved and subgrid levels.
Resumo:
This paper is concerned the calculation of flame structure of one-dimensional laminar premixed flames using the technique of operator-splitting. The technique utilizes an explicit method of solution with one step Euler for chemistry and a novel probabilistic scheme for diffusion. The relationship between diffusion phenomenon and Gauss-Markoff process is exploited to obtain an unconditionally stable explicit difference scheme for diffusion. The method has been applied to (a) a model problem, (b) hydrazine decomposition, (c) a hydrogen-oxygen system with 28 reactions with constant Dρ 2 approximation, and (d) a hydrogen-oxygen system (28 reactions) with trace diffusion approximation. Certain interesting aspects of behaviour of the solution with non-unity Lewis number are brought out in the case of hydrazine flame. The results of computation in the most complex case are shown to compare very favourably with those of Warnatz, both in terms of accuracy of results as well as computational time, thus showing that explicit methods can be effective in flame computations. Also computations using the Gear-Hindmarsh for chemistry and the present approach for diffusion have been carried out and comparison of the two methods is presented.
Resumo:
A study has been made of the problem of steady, one-dimensional, laminar flame propagation in premixed gases, with the Lewis number differing from (and equal to) unity. Analytical solutions, using the method of matched asymptotic expansions, have been obtained for large activation energies. Numerical solutions have been obtained for a wide range of the reduced activation temperature parameter (n {geometrically equal to} E/RTb), and the Lewis number δ. The studies reveal that the flame speed eigenvalue is linear in Lewis number for first order and quadratic in Lewis number for second order reactions. For a quick determination of flame speeds, with reasonable accuracy, a simple rule, expressing the flame speed eigenvalue as a function of the Lewis number and the centroid of the reaction rate function, is proposed. Comparisons have been made with some of the earlier works, for both first and second order reactions.
Resumo:
Unsteady propagation of spherical flames, both inward and outward, are studied numerically extensively for single-step reaction and for different Lewis numbers of fuel/oxidizer. The dependence of flame speed ratio (s) and flame temperature ratio are obtained for a range of Lewis numbers and stretch (kappa) values. These results of s versus kappa show that the asymptotic theory by Frankel and Sivashinsky is reasonable for outward propagation. Other theories are unsatisfactory both quantitatively and qualitatively. The stretch effects are much higher for negative stretch than for positive stretch, as also seen in the theory of Frankel and Sivashinsky. The linearity of the flame speed ratio vs stretch relationship is restricted to nondimensional stretch of +/-0.1. It is shown further that the results from cylindrical flames are identical to the spherical flame on flame speed ratio versus nondimensional stretch plot thus confirming the generality of the concept of stretch. The comparison of the variation of (ds/dkappa)kappa=0 with beta(Lc - 1) show an offset between the computed and the asymptotic results of Matalon and Matkowsky. The departure of negative stretch results from this variation is significant. Several earlier experimental results are analysed and set out in the form of s versus kappa plot. Comparison of the results with experiments seem reasonable for negative stretch. The results for positive stretch are satisfactory qualitatively for a few cases. For rich propane-air, there are qualitative differences pointing to the need for full chemistry calculations in the extraction of stretch effects.
Resumo:
Soot particles are generated in a flame caused by burning ethylene gas. The particles are collected thermophoretically at different locations of the flame. The particles are used to lubricate a steel/steel ball on flat reciprocating sliding contact, as a dry solid lubricant and also as suspended in hexadecane. Reciprocating contact is shown to establish a protective and low friction tribo-film. The friction correlates with the level of graphitic order of the soot, which is highest in the soot extracted from the mid-flame region and is low in the soot extracted from the flame root and flame tip regions. Micro-Raman spectroscopy of the tribo-film shows that the a priori graphitic order, the molecular carbon content of the soot and the graphitization of the film as brought about by tribology distinguish between the frictions of soot extracted from different regions of the flame, and differentiate the friction associated with dry tribology from that recorded under lubricated tribology.
Resumo:
In the present study, a new turbulent premixed combustion model is proposed by integrating the Coherent Flame Model with the modified eddy dissipation concept, and relating the fine structure mass fraction to the flame surface density. First, experimental results of turbulent flame speed available from literature are compared with the predicted results at different turbulence intensities to validate the flame surface density model. It is observed that the model is able to predict the turbulent burning speeds accurately. Then, a comprehensive validation is carried out utilizing data on a turbulent lifted methane flame issuing into a vitiated co-flow. Detailed comparison of temperature and species concentrations between experiment and simulation is performed at different heights of the flame. Overall, the model is found to predict both the spatial variation and peak values of the scalars at various heights satisfactorily.
Resumo:
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re-T,f(0.5) scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re-T,Re-f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re-T,M(0.5) irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.