880 resultados para Predators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of factors influence prey selection by predators. Because Barn Owls (Tyto alba) and Burrowing Owls (Athene cunicularia) differ in size and foraging tactics, we expected differential predation on small mammal prey. We hypothesized that the Barn Owl, all active predator, would prey on smaller and younger individuals than the Burrowing Owl, a sit-and-wait predator. We used pellet analyses to evaluate selection of small mammals by the two owls in relation to prey), species, age, and size at the Ecological Station of Itirapina, state of Sao Paulo, in southeastern Brazil. Small mammals constituted most of the prey individuals and biomass in the diet of Barn Owls. Although Burrowing Owls consumed a wider range of taxa, small mammals represented one-third of all biomass consumed. With respect. to small mammals, Barn Owls foraged selectively relative to prey species, size, and age. Burrowing Owls foraged opportunistically relative to prey species, but selectively relative to prey size and age. Barn Owls selected smaller and younger (juvenile and subadult) individuals of the delicate vesper mouse (Calomys tener) and Burrowing Owls preyed more oil larger and older (subadult only) individuals. morphology and behavior of both prey and predators may explain this differential predation. Our data suggest that the active predator feeds oil smaller and younger prey, and the sit-and-wait predator took relatively larger and older prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Psecas chapoda, a neotropical jumping spider strictly associated with the terrestrial bromeliad Bromelia balansae in cerrados and semi-deciduous forests in South America, effectively contributes to plant nutrition and growth. In this study, our goal was to investigate if spider density caused spatial variations in the strength of this spider-plant mutualism. We found a positive significant relationship between spider density and delta N-15 values for bromeliad leaves in different forest fragments. Open grassland Bromeliads were associated with spiders and had higher delta N-15 values compared to forest bromeliads. Although forest bromeliads had no association with spiders their total N concentrations were higher. These results suggest that bromeliad nutrition is likely more litter-based in forests and more spider-based in open grasslands. This study is one of the few to show nutrient provisioning and conditionality in a spider-plant system. (c) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural selection has caused prey species to evolve distinct defensive mechanisms. One of such mechanisms was the evolution of noxious or distasteful chemicals, which have appeared independently in a number of vertebrates and invertebrates. In detailed analyses of arthropod behaviour, scent gland secretions have consistently been shown to be responsible for repelling specific predators. Because using such chemicals is costly, animals with alternative cheaper defences are expected not to release such secretions when alternative options exist. In this study, we sought to determine the defensive mechanisms of the harvestman Discocyrtus invalidus, a heavy bodied species that bears a pair of repugnatorial glands. The spider Enoploctenus cyclothorax was used as the predator, and the cricket Gryllus sp. was used as a control. In a first set of experiments, the harvestmen were preyed upon significantly less than the crickets. In two other experiments, we found that harvestmen did not use their scent gland secretions to deter the predator. Moreover, results of a fourth experiment revealed that these spiders are not repelled by defensive secretions. Discocyrtus invalidus has a thick cuticle on the entire body: scanning electron micrographs revealed that only the mouth, the articulations of appendages and the tips of the legs are not covered by a hard integument. In a fifth experiment, we found that these spiders had difficulty piercing the harvestmen body. This is the first experimental evidence that a chemically defended arachnid does not use its scent gland secretions to repel a much larger predator but instead relies on its heavily built body. (c) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) has been reported from the Americas, Africa and Asia, often in association with Aceria guerreronis Keifer (Acari: Eriophyidae), one of the most important pests of coconut (Cocos nucifera L.) in diVerent parts of the world. That phytoseiid has been considered one of the most common predators associated with A. guerreronis in Brazil. The objective of this study was to evaluate the feeding preference and the eVect of food items commonly present on coconut fruits and several temperature regimes on the life history of a Brazilian population of N. baraki. Completion of immature development was possible when N. baraki was fed A. guerreronis, Steneotarsonemus concavuscutum Lofego and Gondim Jr., and Tyrophagus putrescentiae (Schrank). Fecundity was highest on T. putrescentiae (39.4 eggs), followed by A. guerreronis (24.8 eggs). In choice tests, irrespective of the food on which N. baraki was reared, a larger number of adults of this predator chose leaf discs containing A. guerreronis than discs containing other food items, demonstrating a preference of the former for the latter as food. Egg to adult thermal developmental time was calculated as 84.2 degree-days, above a threshold of 15.8 degrees C. This lower developmental threshold is higher than previously published for phytoseiid species from higher latitudes. Neoseiulus baraki was shown to have higher biotic potential at 30 degrees C (r(m) 0.29). The results suggest N. baraki to be a promising biological control agent of A. guerreronis, well adapted to survive and develop in areas with relatively high temperatures, where that pest prevails.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biology of predator mite Euseius alatus DeLeon (Acari: Phytoseiidae) under different temperatures. Euseius alatus DeLeon (Acari: Phytoseiidae) is one of the most common predators of tropical fruit trees in Brazil, feeding of pollen, mites and other small arthropods. This predator presents wide distribution, occurring from Rio Grande do Sul to Ceara. This work had as objective to evaluate the effect of temperature oil the development and reproduction of E. alatus, in addition to determining their thermal requirements. The study was accomplished at temperatures of 18, 21, 24, 27, 30 and 33 degrees C; relative humidity of 70 +/- 5%; and 12-h photophase. At these temperatures, the egg-adult period lasted 14.0; 8.1; 5.5; 4.9; 3.8 and 3.1 days, respectively. The egg, larva, protonymph and deutonymph stages and the egg-adult period presented thermal thresholds of 12.52; 13.85; 14.86; 14.86 and 13.31 degrees C,and thermal constants of 22.32; 14.23; 16.23; 17.3 and 70.16 degrees days. The values for the parameters of the fertility life table, analyzed ill conjunction With the values of the different variables of development at different temperatures, showed that the temperature of 30 degrees C is the Most suitable for development and reproduction of E. alatus in the laboratory. Therefore, is it apparent that the best temperature conditions for the development of L alatus are found in the warmer regions of Brazil, such as those observed in northeastern Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predatory behaviour and reproductive output of the ladybird beetle Stethorus tridens Gordon as function of the tomato red spider mite (TRSM), Tetranychus evansi Baker & Pritchard, densities was investigated in the laboratory. Adult female of S. tridens were isolated in cylindrical plastic arenas, containing a leaf disc of Solanum americanum Mill. with 5, 20, 40, 60, 80 or 100 T. evansi nymphs. The number of prey consumed and eggs laid were evaluated daily for ten consecutive days, starting at the oviposition. Oviposition of S. tridens was positively correlated with prey consumption and lower threshold prey consumption for S. tridens laying eggs was 16.3 mites per day. The instantaneous rate of attack (ca. discovery area) and the handling time were 0.0062 h(-1) and 0.83 h, and 0.00254 h(-1) and 0.78 h, respectively, for predators at the 1st- and 10th-oviposition day. The predator exhibited a type II functional response at 1st- and 10th-oviposition day with a maximum consumption per predator of 33 T. evansi nymphs per day at the highest prey density. The ladybird beetle S. tridens is often collected associated with red spider mite colonies on solanaceous wild plants and the results suggest the potential of this ladybird beetle to control T. evansi in tomatoes crops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhodacaridae are cosmopolitan mites mentioned as predators, although nothing is known about their potential as biological control agents. One of the objectives of the work reported in this paper was to evaluate the potential of Protogamasellopsis posnaniensis (Acari: Rhodacaridae) as predator of representative species of insects of the families Sciaridae (Bradysia matogrossensis (Lane)) and Thripidae (Frankliniella occidentalis (Pergande)), of mites of the family Acaridae (Tyrophagus putrescentiae (Schrank) and Rhizoglyphus echinopus (Fumouze & Robin) and of nematodes of the family Rhabditidae (Protorhabditis sp.). Another objective was to determine the biological cycle of P. posnaniensis when fed the prey on which it performed best in the preceding predation test. The study was conducted in a laboratory where the experimental units were maintained at 25 +/- 1 degrees C, 97 +/- 3% RH and in the dark. Although the predator was able to kill all prey species considered in this study, the most favorable prey were T. putrescentiae, F. occidentalis and Protorhabditis sp. Survivorship of the predator in predation tests was always 98% or higher. Life table biological parameters when the predator was fed T. putrescentiae were: R(o) = 109.29; T = 19.06 days; lambda = 1.28 e r(m) = 0.32 female/female/day. Despite preying upon larvae of B. matogrossensis, eggs of the former can also be killed by the latter. The results indicated that A posnaniensis is a promising biological control agent, deserving additional studies on its possible use for the control of soil pests. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The eriophyid mite Aceria guerreronis occurs in most coconut growing regions of the world and causes enormous damage to coconut fruits. The concealed environment of the fruit perianth under which the mite resides renders its control extremely difficult. Recent studies suggest that biological control could mitigate the problems caused by this pest. Neoseiulus paspalivorus and Proctolaelaps bickleyi are two of the most frequently found predatory mites associated with A. guerreronis on coconut fruits. Regarding biological control, the former has an advantage in invading the tight areas under the coconut fruit perianth while the latter is more voracious on the pest mites and has a higher reproductive capacity. Based on the idea of the combined use/release of both predators on coconut fruits, we studied their compatibility in spatial niche use and intraguild predation (IGP). Spatial niche use on coconut fruits was examined on artificial arenas mimicking the area under the coconut fruit perianth and the open fruit surface. Both N. paspalivorus and P. bickleyi preferentially resided and oviposited inside the tight artificial chamber. Oviposition rate of P. bickleyi and residence time of N. paspalivorus inside the chamber were reduced in the presence of a conspecific female. Residence of N. paspalivorus inside the chamber was also influenced by the presence of P. bickleyi. Both N. paspalivorus and P. bickleyi preyed upon each other with relatively moderate IGP rates of adult females on larvae but neither species yielded nutritional benefits from IGP in terms of adult survival and oviposition. We discuss the relevance of our findings for a hypothetic combined use of both predators in biological control of A. guerreronis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coconut is an important crop in tropical and subtropical regions. Among the mites that infest coconut palms, Aceria guerreronis Keifer is economically the most important. We conducted surveys throughout the coconut growing areas of Brazil. Samples were taken from attached coconuts, leaflets, fallen coconuts and inflorescences of coconut palms in 112 localities aiming to determine the Occurrence and the distribution of phytophagous mites, particularly A. guerreronis, and associated natural enemies. Aceria guerreronis was the most abundant phytophagous mite followed by Steneotarsonemus concavuscutum Lofego & Gondim Jr. and Steneotarsonemus furcatus De Leon (Tarsonemidae). Infestation by A. guerreronis was recorded in 87% of the visited localities. About 81% of all predatory mites belonged to the family Phytoseiidae, mainly represented by Neoseiulus paspalivorus De Leon, Neoseiulus baraki Athias-Henriot and Amblyseius largoensis Muma; 12% were Ascidae, mainly Proctolaelaps bickleyi Bram, Proctolaelaps sp nov and Lasioseius subterraneus Chant. Neoseiulus paspalivorus and N. baraki were the most abundant predators on attached coconuts. Ascidae were predominant on fallen coconuts, while A. largoensis was predominant on leaflets; no mites were found on branches of inflorescences. Leaflets harboured higher mite diversity than the attached coconuts. Mite diversity was the highest in the state Para and on palms surrounded by seasonal forests and Amazonian rain-forests. Neoseiulus paspalivorus, N. baraki and P. bickleyi were identified as the most promising predators of A. guerreronis. Analyses of the influence of climatic factors revealed that dry ambient conditions favour the establishment of A. guerreronis. Neoseiulus paspalivorus and N. baraki have differing climatic requirements; the former being more abundant in warm and dry areas, the latter prevailing ill moderately tempered and humid areas. We discuss the significance of our findings for natural and biological control of A. guerreronis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetranychus evansi Baker and Pritchard and Tetranychus urticae Koch (Acari: Tetranychidae) are important pests of Solanaceae in many countries. Several studies have demonstrated that T. urticae is an acceptable prey to many predatory mites, although the suitability of this prey depends on the host plant. T. evansi, has been shown to be an unfavorable prey to most predatory mites that have been tested against it. The predator Phytoseiulus fragariae Denmark and Schicha (Acari: Phytoseiidae) has been found in association with the two species in Brazil. The objective of this work was to compare biological parameters of P. fragariae on T. evansi and on T. urticae as prey. The study was conducted under laboratory conditions at 10, 15, 20, 25 and 30 degrees C. At all temperatures, survivorship was lower on T. evansi than on T. urticae. No predator reached adulthood at 10 degrees C on the former species; even on the latter species, only about 36% of the predators reached adulthood at 10 degrees C. For both prey, in general, duration of each life stage was shorter, total fecundity was lower and intrinsic rate of population increase (r(m) ) was higher with increasing temperatures. The slower rate of development of P. fragariae on T. evansi resulted in a slightly higher thermal requirement (103.9 degree-days) on that prey than on T. urticae (97.1 degree-days). The values of net reproduction rate (R-0), intrinsic rate of increase (r (m) ) and finite rate of increase (lambda) were significantly higher on T. urticae, indicating faster population increase of the predator on this prey species. The highest value of r (m) of the predator was 0.154 and 0.337 female per female per day on T. evansi and on T. urticae, respectively. The results suggested that P. fragariae cannot be considered a good predator of T. evansi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant`s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicoverpa armigera is a serious insect pest of sweet corn in Australia and is becoming increasingly difficult to manage with conventional chemical insecticides due to resistance problems. A number of alternative H. armigera control options were evaluated in sweet corn and compared with deltamethrin and no action (control). The alternative tactics evaluated were: heliothis nuclear polyhedrosis virus plus Trichogramma nr. brassicae releases; Bacillus thuringiensis; and Trichogramma alone. The H. tea nuclear polyhedrosis virus + Trichogramma plots had the lowest cob damage (6.0%), followed by the B. thuringiensis plots (12.0%), Trichogramma alone plots (20.2%), control plots (23.2%) and deltamethrin plots (53.5%). There was no evidence to suggest that the Trichogramma nr. brassicae releases had any impact on H. armigera egg mortality. However, there was a large natural population of Trichogramma pretiosum in all plots. The application of deltamethrin reduced the action of these wasps and predators, resulting in higher larval infestation and significantly more cob damage. The findings indicate that the pathogens heliothis nuclear polyhedrosis virus and B. thuringiensis can effectively control H. armigera when their action complements high natural levels of egg parasitism, and that they have potential for use in integrated pest management programs in sweet corn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diet and feeding habits of the epaulette shark, Hemiscyllium ocellatum, were investigated through stomach content analysis. Five groups of prey items were found. The index of relative importance showed worms and crabs,to be of greatest value at 51.3% and 40.1% respectively. The three minor prey groups were shrimps (7.7%), small fishes (0.7%) and amphipods (0.3%). Epaulette sharks tend to be crepuscular, although feeding bouts may occur at any time. They appear to be opportunistic predators, using olfaction and electroreception in prey capture. This species appears to be an important benthic predator in the reef flat environment on Heron Island Reef.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model is presented that describes a system where two consumer species compete exploitatively for a single renewable resource. The resource is distributed in a patchy but homogeneous environment; that is, all patches are intrinsically identical. The two consumer species are referred to as diggers and grazers, where diggers deplete the resource within a patch to lower densities than grazers. We show that the two distinct feeding strategies can produce a heterogeneous resource distribution that enables their coexistence. Coexistence requires that grazers must either move faster than diggers between patches or convert the resources to population growth much more efficiently than diggers. The model shows that the functional form of resource renewal within a patch is also important for coexistence. These results contrast with theory that considers exploitation competition for a single resource when the resource is assumed to be well mixed throughout the system.