973 resultados para Power supply circuits
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In order to contribute to the discussion of defining a generalized power theory, valid for unbalanced and non linear circuits, this paper discusses the relationship and discrepancies among four modern power theories. Three-phase four-wire circuits, under different conditions, have been analyzed, since the most conflicting and intriguing interpretations take place in case of return conductor occurrence. Simulation results of different load, power supply and line conditions will be discussed in order to elucidate the author's conclusions and to provoke the readers for additional discussions. © 2010 IEEE.
Resumo:
This paper presents a step-up micro-power converter for solar energy harvesting applications. The circuit uses a SC voltage tripler architecture, controlled by an MPPT circuit based on the Hill Climbing algorithm. This circuit was designed in a 0.13 mu m CMOS technology in order to work with an a-Si PV cell. The circuit has a local power supply voltage, created using a scaled down SC voltage tripler, controlled by the same MPPT circuit, to make the circuit robust to load and illumination variations. The SC circuits use a combination of PMOS and NMOS transistors to reduce the occupied area. A charge re-use scheme is used to compensate the large parasitic capacitors associated to the MOS transistors. The simulation results show that the circuit can deliver a power of 1266 mu W to the load using 1712 mu W of power from the PV cell, corresponding to an efficiency as high as 73.91%. The simulations also show that the circuit is capable of starting up with only 19% of the maximum illumination level.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
Modern fully integrated transceivers architectures, require circuits with low area, low cost, low power, and high efficiency. A key block in modern transceivers is the power amplifier, which is deeply studied in this thesis. First, we study the implementation of a classical Class-A amplifier, describing the basic operation of an RF power amplifier, and analysing the influence of the real models of the reactive components in its operation. Secondly, the Class-E amplifier is deeply studied. The different types of implementations are reviewed and theoretical equations are derived and compared with simulations. There were selected four modes of operation for the Class-E amplifier, in order to perform the implementation of the output stage, and the subsequent comparison of results. This led to the selection of the mode with the best trade-off between efficiency and harmonics distortion, lower power consumption and higher output power. The optimal choice was a parallel circuit containing an inductor with a finite value. To complete the implementation of the PA in switching mode, a driver was implemented. The final block (output stage together with the driver) got 20 % total efficiency (PAE) transmitting 8 dBm output power to a 50 W load with a total harmonic distortion (THD) of 3 % and a total consumption of 28 mW. All implementations are designed using standard 130 nm CMOS technology. The operating frequency is 2.4 GHz and it was considered an 1.2 V DC power supply. The proposed circuit is intended to be used in a Bluetooth transmitter, however, it has a wider range of applications.
Resumo:
Tehoelektoniikkalaitteella tarkoitetaan ohjaus- ja säätöjärjestelmää, jolla sähköä muokataan saatavilla olevasta muodosta haluttuun uuteen muotoon ja samalla hallitaan sähköisen tehon virtausta lähteestä käyttökohteeseen. Tämä siis eroaa signaalielektroniikasta, jossa sähköllä tyypillisesti siirretään tietoa hyödyntäen eri tiloja. Tehoelektroniikkalaitteita vertailtaessa katsotaan yleensä niiden luotettavuutta, kokoa, tehokkuutta, säätötarkkuutta ja tietysti hintaa. Tyypillisiä tehoelektroniikkalaitteita ovat taajuudenmuuttajat, UPS (Uninterruptible Power Supply) -laitteet, hitsauskoneet, induktiokuumentimet sekä erilaiset teholähteet. Perinteisesti näiden laitteiden ohjaus toteutetaan käyttäen mikroprosessoreja, ASIC- (Application Specific Integrated Circuit) tai IC (Intergrated Circuit) -piirejä sekä analogisia säätimiä. Tässä tutkimuksessa on analysoitu FPGA (Field Programmable Gate Array) -piirien soveltuvuutta tehoelektroniikan ohjaukseen. FPGA-piirien rakenne muodostuu erilaisista loogisista elementeistä ja niiden välisistä yhdysjohdoista.Loogiset elementit ovat porttipiirejä ja kiikkuja. Yhdysjohdot ja loogiset elementit ovat piirissä kiinteitä eikä koostumusta tai lukumäärää voi jälkikäteen muuttaa. Ohjelmoitavuus syntyy elementtien välisistä liitännöistä. Piirissä on lukuisia, jopa miljoonia kytkimiä, joiden asento voidaan asettaa. Siten piirin peruselementeistä voidaan muodostaa lukematon määrä erilaisia toiminnallisia kokonaisuuksia. FPGA-piirejä on pitkään käytetty kommunikointialan tuotteissa ja siksi niiden kehitys on viime vuosina ollut nopeaa. Samalla hinnat ovat pudonneet. Tästä johtuen FPGA-piiristä on tullut kiinnostava vaihtoehto myös tehoelektroniikkalaitteiden ohjaukseen. Väitöstyössä FPGA-piirien käytön soveltuvuutta on tutkittu käyttäen kahta vaativaa ja erilaista käytännön tehoelektroniikkalaitetta: taajuudenmuuttajaa ja hitsauskonetta. Molempiin testikohteisiin rakennettiin alan suomalaisten teollisuusyritysten kanssa soveltuvat prototyypit,joiden ohjauselektroniikka muutettiin FPGA-pohjaiseksi. Lisäksi kehitettiin tätä uutta tekniikkaa hyödyntävät uudentyyppiset ohjausmenetelmät. Prototyyppien toimivuutta verrattiin vastaaviin perinteisillä menetelmillä ohjattuihin kaupallisiin tuotteisiin ja havaittiin FPGA-piirien mahdollistaman rinnakkaisen laskennantuomat edut molempien tehoelektroniikkalaitteiden toimivuudessa. Työssä on myösesitetty uusia menetelmiä ja työkaluja FPGA-pohjaisen säätöjärjestelmän kehitykseen ja testaukseen. Esitetyillä menetelmillä tuotteiden kehitys saadaan mahdollisimman nopeaksi ja tehokkaaksi. Lisäksi työssä on kehitetty FPGA:n sisäinen ohjaus- ja kommunikointiväylärakenne, joka palvelee tehoelektroniikkalaitteiden ohjaussovelluksia. Uusi kommunikointirakenne edistää lisäksi jo tehtyjen osajärjestelmien uudelleen käytettävyyttä tulevissa sovelluksissa ja tuotesukupolvissa.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The unprecedented and relentless growth in the electronics industry is feeding the demand for integrated circuits (ICs) with increasing functionality and performance at minimum cost and power consumption. As predicted by Moore's law, ICs are being aggressively scaled to meet this demand. While the continuous scaling of process technology is reducing gate delays, the performance of ICs is being increasingly dominated by interconnect delays. In an effort to improve submicrometer interconnect performance, to increase packing density, and to reduce chip area and power consumption, the semiconductor industry is focusing on three-dimensional (3D) integration. However, volume production and commercial exploitation of 3D integration are not feasible yet due to significant technical hurdles.
At the present time, interposer-based 2.5D integration is emerging as a precursor to stacked 3D integration. All the dies and the interposer in a 2.5D IC must be adequately tested for product qualification. However, since the structure of 2.5D ICs is different from the traditional 2D ICs, new challenges have emerged: (1) pre-bond interposer testing, (2) lack of test access, (3) limited ability for at-speed testing, (4) high density I/O ports and interconnects, (5) reduced number of test pins, and (6) high power consumption. This research targets the above challenges and effective solutions have been developed to test both dies and the interposer.
The dissertation first introduces the basic concepts of 3D ICs and 2.5D ICs. Prior work on testing of 2.5D ICs is studied. An efficient method is presented to locate defects in a passive interposer before stacking. The proposed test architecture uses e-fuses that can be programmed to connect or disconnect functional paths inside the interposer. The concept of a die footprint is utilized for interconnect testing, and the overall assembly and test flow is described. Moreover, the concept of weighted critical area is defined and utilized to reduce test time. In order to fully determine the location of each e-fuse and the order of functional interconnects in a test path, we also present a test-path design algorithm. The proposed algorithm can generate all test paths for interconnect testing.
In order to test for opens, shorts, and interconnect delay defects in the interposer, a test architecture is proposed that is fully compatible with the IEEE 1149.1 standard and relies on an enhancement of the standard test access port (TAP) controller. To reduce test cost, a test-path design and scheduling technique is also presented that minimizes a composite cost function based on test time and the design-for-test (DfT) overhead in terms of additional through silicon vias (TSVs) and micro-bumps needed for test access. The locations of the dies on the interposer are taken into consideration in order to determine the order of dies in a test path.
To address the scenario of high density of I/O ports and interconnects, an efficient built-in self-test (BIST) technique is presented that targets the dies and the interposer interconnects. The proposed BIST architecture can be enabled by the standard TAP controller in the IEEE 1149.1 standard. The area overhead introduced by this BIST architecture is negligible; it includes two simple BIST controllers, a linear-feedback-shift-register (LFSR), a multiple-input-signature-register (MISR), and some extensions to the boundary-scan cells in the dies on the interposer. With these extensions, all boundary-scan cells can be used for self-configuration and self-diagnosis during interconnect testing. To reduce the overall test cost, a test scheduling and optimization technique under power constraints is described.
In order to accomplish testing with a small number test pins, the dissertation presents two efficient ExTest scheduling strategies that implements interconnect testing between tiles inside an system on chip (SoC) die on the interposer while satisfying the practical constraint that the number of required test pins cannot exceed the number of available pins at the chip level. The tiles in the SoC are divided into groups based on the manner in which they are interconnected. In order to minimize the test time, two optimization solutions are introduced. The first solution minimizes the number of input test pins, and the second solution minimizes the number output test pins. In addition, two subgroup configuration methods are further proposed to generate subgroups inside each test group.
Finally, the dissertation presents a programmable method for shift-clock stagger assignment to reduce power supply noise during SoC die testing in 2.5D ICs. An SoC die in the 2.5D IC is typically composed of several blocks and two neighboring blocks that share the same power rails should not be toggled at the same time during shift. Therefore, the proposed programmable method does not assign the same stagger value to neighboring blocks. The positions of all blocks are first analyzed and the shared boundary length between blocks is then calculated. Based on the position relationships between the blocks, a mathematical model is presented to derive optimal result for small-to-medium sized problems. For larger designs, a heuristic algorithm is proposed and evaluated.
In summary, the dissertation targets important design and optimization problems related to testing of interposer-based 2.5D ICs. The proposed research has led to theoretical insights, experiment results, and a set of test and design-for-test methods to make testing effective and feasible from a cost perspective.
Resumo:
This dissertation presents the design of three high-performance successive-approximation-register (SAR) analog-to-digital converters (ADCs) using distinct digital background calibration techniques under the framework of a generalized code-domain linear equalizer. These digital calibration techniques effectively and efficiently remove the static mismatch errors in the analog-to-digital (A/D) conversion. They enable aggressive scaling of the capacitive digital-to-analog converter (DAC), which also serves as sampling capacitor, to the kT/C limit. As a result, outstanding conversion linearity, high signal-to-noise ratio (SNR), high conversion speed, robustness, superb energy efficiency, and minimal chip-area are accomplished simultaneously. The first design is a 12-bit 22.5/45-MS/s SAR ADC in 0.13-μm CMOS process. It employs a perturbation-based calibration based on the superposition property of linear systems to digitally correct the capacitor mismatch error in the weighted DAC. With 3.0-mW power dissipation at a 1.2-V power supply and a 22.5-MS/s sample rate, it achieves a 71.1-dB signal-to-noise-plus-distortion ratio (SNDR), and a 94.6-dB spurious free dynamic range (SFDR). At Nyquist frequency, the conversion figure of merit (FoM) is 50.8 fJ/conversion step, the best FoM up to date (2010) for 12-bit ADCs. The SAR ADC core occupies 0.06 mm2, while the estimated area the calibration circuits is 0.03 mm2. The second proposed digital calibration technique is a bit-wise-correlation-based digital calibration. It utilizes the statistical independence of an injected pseudo-random signal and the input signal to correct the DAC mismatch in SAR ADCs. This idea is experimentally verified in a 12-bit 37-MS/s SAR ADC fabricated in 65-nm CMOS implemented by Pingli Huang. This prototype chip achieves a 70.23-dB peak SNDR and an 81.02-dB peak SFDR, while occupying 0.12-mm2 silicon area and dissipating 9.14 mW from a 1.2-V supply with the synthesized digital calibration circuits included. The third work is an 8-bit, 600-MS/s, 10-way time-interleaved SAR ADC array fabricated in 0.13-μm CMOS process. This work employs an adaptive digital equalization approach to calibrate both intra-channel nonlinearities and inter-channel mismatch errors. The prototype chip achieves 47.4-dB SNDR, 63.6-dB SFDR, less than 0.30-LSB differential nonlinearity (DNL), and less than 0.23-LSB integral nonlinearity (INL). The ADC array occupies an active area of 1.35 mm2 and dissipates 30.3 mW, including synthesized digital calibration circuits and an on-chip dual-loop delay-locked loop (DLL) for clock generation and synchronization.
Resumo:
Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.
Resumo:
Power electronic circuits are moving towards higher switching frequencies, exploiting the capabilities of novel devices to shrink the dimension of passive components. This trend demands sensors capable enough to operate at such high frequencies. This thesis aims to demonstrate through experimental characterization, the broadband capability of a fully integrated CMOS X-Hall current sensor in current mode interfaced with a transimpedance amplifier (TIA), chip CH09, realized in CMOS technology for power electronics applications such as power converters. The system exploits a common-mode control system to operate the dual supply system, 5-V for the X-Hall probe and 1.2-V for the readout. The developed prototype achieves a maximum acquisition bandwidth of 12 MHz, a power consumption of 11.46 mW, resolution of 39 mArms, a sensitivity of 8 % /T, and a FoM of 569-MHz/A2mW, significantly higher than current state-of-the-art. Further enhancements were proposed to CH09 as a new chip CH100, aiming for accuracy levels prerequisite for a real-time power electronic application. The TIA was optimized for a wider bandwidth of 26.7 MHz with nearly 30% reduction of the integrated input referred noise of 26.69 nArms at the probe-AFE interface in the frequency band of DC-30 MHz, and a 10% improvement in the dynamic range. The expected input range is 5-A. The chip incorporates a dual sensing chain for differential sensing to overcome common mode interferences. A novel offset cancellation technique is proposed that would require switching of polarity of bias currents. Thermal gain drift was improved by a factor of 8 and will be digitally calibrated utilizing a new built-in temperature sensor with a post calibration measurement accuracy greater than 1%. The estimated power consumption of the entire system is 55.6 mW. Both prototypes have been implemented through a 90-nm microelectronic process from STMicroelectronics and occupy a silicon area of 2.4 mm2.
Resumo:
In recent years, energy modernization has focused on smart engineering advancements. This entails designing complicated software and hardware for variable-voltage digital substations. A digital substation consists of electrical and auxiliary devices, control and monitoring devices, computers, and control software. Intelligent measurement systems use digital instrument transformers and IEC 61850-compliant information exchange protocols in digital substations. Digital instrument transformers used for real-time high-voltage measurements should combine advanced digital, measuring, information, and communication technologies. Digital instrument transformers should be cheap, small, light, and fire- and explosion-safe. These smaller and lighter transformers allow long-distance transmission of an optical signal that gauges direct or alternating current. Cost-prohibitive optical converters are a problem. To improve the tool's accuracy, amorphous alloys are used in the magnetic circuits and compensating feedback. Large-scale voltage converters can be made cheaper by using resistive, capacitive, or hybrid voltage dividers. In known electronic voltage transformers, the voltage divider output is generally on the low-voltage side, facilitating power supply organization. Combining current and voltage transformers reduces equipment size, installation, and maintenance costs. These two gadgets cost less together than individually. To increase commercial power metering accuracy, current and voltage converters should be included into digital instrument transformers so that simultaneous analogue-to-digital samples are obtained. Multichannel ADC microcircuits with synchronous conversion start allow natural parallel sample drawing. Digital instrument transformers are created adaptable to substation operating circumstances and environmental variables, especially ambient temperature. An embedded microprocessor auto-diagnoses and auto-calibrates the proposed digital instrument transformer.
Resumo:
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 mu m CMOS technology, requiring an active area of just 200 mu m x 200 mu m. Experimental results, with a full-scale output current of 700 mu A and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.
Resumo:
Implementing monolithic DC-DC converters for low power portable applications with a standard low voltage CMOS technology leads to lower production costs and higher reliability. Moreover, it allows miniaturization by the integration of two units in the same die: the power management unit that regulates the supply voltage for the second unit, a dedicated signal processor, that performs the functions required. This paper presents original techniques that limit spikes in the internal supply voltage on a monolithic DC-DC converter, extending the use of the same technology for both units. These spikes are mainly caused by fast current variations in the path connecting the external power supply to the internal pads of the converter power block. This path includes two parasitic inductances inbuilt in bond wires and in package pins. Although these parasitic inductances present relative low values when compared with the typical external inductances of DC-DC converters, their effects can not be neglected when switching high currents at high switching frequency. The associated overvoltage frequently causes destruction, reliability problems and/or control malfunction. Different spike reduction techniques are presented and compared. The proposed techniques were used in the design of the gate driver of a DC-DC converter included in a power management unit implemented in a standard 0.35 mu m CMOS technology.