983 resultados para Power Mean
Resumo:
Purpose: to determine whether pupil dilation affects biometric measurements and intraocular lens (IOL) power calculation made using the new swept-source optical coherence tomography-based optical biometer (IOLMaster 700©; Carl Zeiss Meditec, Jena, Germany). Procedures: eighty-one eyes of 81 patients evaluated for cataract surgery were prospectively examined using the IOLMaster 700© before and after pupil dilation with tropicamide 1%. The measurements made were: axial length (AL), central corneal thickness (CCT), aqueous chamber depth (ACD), lens thickness (LT), mean keratometry (MK), white-to-white distance (WTW) and pupil diameter (PD). Holladay II and SRK/T formulas were used to calculate IOL power. Agreement between measurement modes (with and without dilation) was assessed through intraclass correlation coefficients (ICC) and Bland-Altman plots. Results: mean patient age was 75.17 ± 7.54 years (range: 57–92). Of the variables determined, CCT, ACD, LT and WTW varied significantly according to pupil dilation. Excellent intraobserver correlation was observed between measurements made before and after pupil dilation. Mean IOL power calculation using the Holladay 2 and SRK/T formulas were unmodified by pupil dilation. Conclusions: the use of pupil dilation produces statistical yet not clinically significant differences in some IOLMaster 700© measurements. However, it does not affect mean IOL power calculation.
Resumo:
The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake (V̇O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V̇O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V̇O2max, LM, and body mass. The subjects’ test and performance data were as follows: V̇O2max, 4.0±0.3 L min-1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105 ∙ VO -6.002maxand 6.95×1010 ∙ LM-5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V̇O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V̇O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V̇O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.
Resumo:
Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.
Resumo:
Urochloa humidicola is a warm-season grass commonly used as forage in the tropics and is recognized for its tolerance to seasonal flooding. This grass is an important forage species for the Cerrado and Amazon regions of Brazil. U. humidicola is a polyploid species with variable ploidy (6X-9X) and facultative apomixis with high phenotypic plasticity. However, this apomixis and ploidy, as well as the limited knowledge of the genetic basis of the germplasm collection, have constrained genetic breeding activities, yet microsatellite markers may enable a better understanding of the species' genetic composition. This study aimed to develop and characterize new polymorphic microsatellite molecular markers in U. humidicola and to evaluate their transferability to other Urochloa species. A set of microsatellite markers for U. humidicola was identified from two new enriched genomic DNA libraries: the first library was constructed from a single sexual genotype and the second from a pool of eight apomictic genotypes selected on the basis of previous results. Of the 114 loci developed, 72 primer pairs presented a good amplification product, and 64 were polymorphic among the 34 genotypes tested. The number of bands per simple sequence repeat (SSR) locus ranged from 1 to 29, with a mean of 9.6 bands per locus. The mean polymorphism information content (PIC) of all loci was 0.77, and the mean discrimination power (DP) was 0.87. STRUCTURE analysis revealed differences among U. humidicola accessions, hybrids, and other Urochloa accessions. The transferability of these microsatellites was evaluated in four species of the genus, U. brizantha, U. decumbens, U. ruziziensis, and U. dictyoneura, and the percentage of transferability ranged from 58.33% to 69.44% depending on the species. This work reports new polymorphic microsatellite markers for U. humidicola that can be used for breeding programs of this and other Urochloa species, including genetic linkage mapping, quantitative trait loci identification, and marker-assisted selection.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física