997 resultados para Positive sequence
Resumo:
Gene regulation by imposed localization was studied by using designed zinc finger proteins that bind 18-bp DNA sequences in the 5′ untranslated regions of the protooncogenes erbB-2 and erbB-3. Transcription factors were generated by fusion of the DNA-binding proteins to repression or activation domains. When introduced into cells these transcription factors acted as dominant repressors or activators of, respectively, endogenous erbB-2 or erbB-3 gene expression. Significantly, imposed regulation of the two genes was highly specific, despite the fact that the transcription factor binding sites targeted in erbB-2 and erbB-3 share 15 of 18 nucleotides. Regulation of erbB-2 gene expression was observed in cells derived from several species that conserve the DNA target sequence. Repression of erbB-2 in SKBR3 breast cancer cells inhibited cell-cycle progression by inducing a G1 accumulation, suggesting the potential of designed transcription factors for cancer gene therapy. These results demonstrate the willful up- and down-regulation of endogenous genes, and provide an additional means to alter biological systems.
Resumo:
Many bacterial plasmids replicate by a rolling-circle mechanism that involves the generation of single-stranded DNA (ssDNA) intermediates. Replication of the lagging strand of such plasmids initiates from their single strand origin (sso). Many different types of ssos have been identified. One group of ssos, termed ssoA, which have conserved sequence and structural features, function efficiently only in their natural hosts in vivo. To study the host specificity of sso sequences, we have analyzed the functions of two closely related ssoAs belonging to the staphylococcal plasmid pE194 and the streptococcal plasmid pLS1 in Staphylococcus aureus. The pLS1 ssoA functioned poorly in vivo in S. aureus as evidenced by accumulation of high levels of ssDNA but supported efficient replication in vitro in staphylococcal extracts. These results suggest that one or more host factors that are present in sufficient quantities in S. aureus cell-free extracts may be limiting in vivo. Mapping of the initiation points of lagging strand synthesis in vivo and in vitro showed that DNA synthesis initiates from specific sites within the pLS1 ssoA. These results demonstrate that specific initiation of replication can occur from the pLS1 ssoA in S. aureus although it plays a minimal role in lagging strand synthesis in vivo. Therefore, the poor functionality of the pLS1 in vivo in a nonnative host is caused by the low efficiency rather than a lack of specificity of the initiation process. We also have identified ssDNA promoters and mapped the primer RNAs synthesized by the S. aureus and Bacillus subtilis RNA polymerases from the pE194 and pLS1 ssoAs. The S. aureus RNA polymerase bound more efficiently to the native pE194 ssoA as compared with the pLS1 ssoA, suggesting that the strength of RNA polymerase–ssoA interaction may play a major role in the functionality of the ssoA sequences in Gram-positive bacteria.
Resumo:
The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ∼2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ∼60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.
Resumo:
The 1,852,442-bp sequence of an M1 strain of Streptococcus pyogenes, a Gram-positive pathogen, has been determined and contains 1,752 predicted protein-encoding genes. Approximately one-third of these genes have no identifiable function, with the remainder falling into previously characterized categories of known microbial function. Consistent with the observation that S. pyogenes is responsible for a wider variety of human disease than any other bacterial species, more than 40 putative virulence-associated genes have been identified. Additional genes have been identified that encode proteins likely associated with microbial “molecular mimicry” of host characteristics and involved in rheumatic fever or acute glomerulonephritis. The complete or partial sequence of four different bacteriophage genomes is also present, with each containing genes for one or more previously undiscovered superantigen-like proteins. These prophage-associated genes encode at least six potential virulence factors, emphasizing the importance of bacteriophages in horizontal gene transfer and a possible mechanism for generating new strains with increased pathogenic potential.
Resumo:
We present a method for discovering conserved sequence motifs from families of aligned protein sequences. The method has been implemented as a computer program called emotif (http://motif.stanford.edu/emotif). Given an aligned set of protein sequences, emotif generates a set of motifs with a wide range of specificities and sensitivities. emotif also can generate motifs that describe possible subfamilies of a protein superfamily. A disjunction of such motifs often can represent the entire superfamily with high specificity and sensitivity. We have used emotif to generate sets of motifs from all 7,000 protein alignments in the blocks and prints databases. The resulting database, called identify (http://motif.stanford.edu/identify), contains more than 50,000 motifs. For each alignment, the database contains several motifs having a probability of matching a false positive that range from 10−10 to 10−5. Highly specific motifs are well suited for searching entire proteomes, while generating very few false predictions. identify assigns biological functions to 25–30% of all proteins encoded by the Saccharomyces cerevisiae genome and by several bacterial genomes. In particular, identify assigned functions to 172 of proteins of unknown function in the yeast genome.
Resumo:
Immune challenge to the insect Podisus maculiventris induces synthesis of a 21-residue peptide with sequence homology to frog skin antimicrobial peptides of the brevinin family. The insect and frog peptides have in common a C-terminally located disulfide bridge delineating a cationic loop. The peptide is bactericidal and fungicidal, exhibiting the largest antimicrobial spectrum observed so far for an insect defense peptide. An all-D-enantiomer is nearly inactive against Gram-negative bacteria and some Gram-positive strains but is fully active against fungi and other Gram-positive bacteria, suggesting that more than one mechanism accounts for the antimicrobial activity of this peptide. Studies with truncated synthetic isoforms underline the role of the C-terminal loop and flanking residues for the activity of this molecule for which we propose the name thanatin.
Resumo:
Deposition of PrP amyloid in cerebral vessels in conjunction with neurofibrillary lesions is the neuropathologic hallmark of the dementia associated with a stop mutation at codon 145 of PRNP, the gene encoding the prion protein (PrP). In this disorder, the vascular amyloid in tissue sections and the approximately 7.5-kDa fragment extracted from amyloid are labeled by antibodies to epitopes located in the PrP sequence including amino acids 90-147. Amyloid-laden vessels are also labeled by antibodies against the C terminus, suggesting that PrP from the normal allele is involved in the pathologic process. Abundant neurofibrillary lesions are present in the cerebral gray matter. They are composed of paired helical filaments, are labeled with antibodies that recognize multiple phosphorylation sites in tau protein, and are similar to those observed in Alzheimer disease. A PrP cerebral amyloid angiopathy has not been reported in diseases caused by PRNP mutations or in human transmissible spongiform encephalopathies; we propose to name this phenotype PrP cerebral amyloid angiopathy (PrP-CAA).
Resumo:
We present a method for predicting protein folding class based on global protein chain description and a voting process. Selection of the best descriptors was achieved by a computer-simulated neural network trained on a data base consisting of 83 folding classes. Protein-chain descriptors include overall composition, transition, and distribution of amino acid attributes, such as relative hydrophobicity, predicted secondary structure, and predicted solvent exposure. Cross-validation testing was performed on 15 of the largest classes. The test shows that proteins were assigned to the correct class (correct positive prediction) with an average accuracy of 71.7%, whereas the inverse prediction of proteins as not belonging to a particular class (correct negative prediction) was 90-95% accurate. When tested on 254 structures used in this study, the top two predictions contained the correct class in 91% of the cases.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The signal sequence trap technique was applied to identify genes coding for secreted and membrane bound proteins from Echinococcus granulosus, the etiologic agent of cystic hydatid disease. An E. granulosus protoscolex cDNA library was constructed in the AP-PST vector such that randomly primed cDNAs were fused with a placental alkaline phosphatase reporter gene lacking its endogenous signal peptide. E. granulosus cDNAs encoding a functional signal peptide were selected by their ability to rescue secretion of alkaline phosphatase by COS-7 cells that had been transfected with the cDNA library. Eighteen positive clones were identified and sequenced. Their deduced amino acid sequences showed significant similarity with amino acid transporters, Krebs cycle intermediates transporters, presenilins and vacuolar protein sorter proteins. Other cDNAs encoded secreted proteins without homologues. Three sequences were transcribed antisense to E. granulosus expressed sequence tags. All the mRNAs were expressed in protoscoleces and adult worms, but some of them were not found in oncospheres. The putative E. granulosus secreted and membrane bound proteins identified are likely to play important roles in the metabolism, development and survival in the host and represent potential targets for diagnosis, drugs and vaccines against E. granulosus. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: The description and evaluation of the performance of a new real-time seizure detection algorithm in the newborn infant. Methods: The algorithm includes parallel fragmentation of EEG signal into waves; wave-feature extraction and averaging; elementary, preliminary and final detection. The algorithm detects EEG waves with heightened regularity, using wave intervals, amplitudes and shapes. The performance of the algorithm was assessed with the use of event-based and liberal and conservative time-based approaches and compared with the performance of Gotman's and Liu's algorithms. Results: The algorithm was assessed on multi-channel EEG records of 55 neonates including 17 with seizures. The algorithm showed sensitivities ranging 83-95% with positive predictive values (PPV) 48-77%. There were 2.0 false positive detections per hour. In comparison, Gotman's algorithm (with 30 s gap-closing procedure) displayed sensitivities of 45-88% and PPV 29-56%; with 7.4 false positives per hour and Liu's algorithm displayed sensitivities of 96-99%, and PPV 10-25%; with 15.7 false positives per hour. Conclusions: The wave-sequence analysis based algorithm displayed higher sensitivity, higher PPV and a substantially lower level of false positives than two previously published algorithms. Significance: The proposed algorithm provides a basis for major improvements in neonatal seizure detection and monitoring. Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.
Resumo:
A minor groove binder (MGB) TaqMan real-time PCR assay was developed for the detection of respiratory syncytial virus (RSV) in clinical specimens. Upon evaluation of the assay, notable differences were observed in the overall fluorescent response obtained from RSV positive specimens, with some linear amplification curves deviating only slightly from baseline fluorescence. Sequencing of the probes targets in these RSV strains revealed single base mismatches with the MGB TaqMan probe. overall, these results highlight the usefulness of MGB TaqMan probes for the detection of mismatches, but suggest that MGB Taqman probes have limitations for routine screening for uncharacterised viral strains. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Among the most surprising findings in Physics Education Research is the lack of positive results on attitudinal measures, such as Colorado Learning Attitudes about Science Survey (CLASS) and Maryland Physics Expectations Survey (MPEX). The uniformity with which physics teaching manages to negatively shift attitudes toward physics learning is striking. Strategies which have been shown to improve conceptual learning, such as interactive engagement and studio-format classes, provide more authentic science experiences for students; yet do not seem to be sufficient to produce positive attitudinal results. Florida International University’s Physics Education Research Group has implemented Modeling Instruction in University Physics classes as part of an overall effort toward building a research and learning community. Modeling Instruction is explicitly designed to engage students in scientific practices that include model building, validation, and revision. Results from a preinstruction/postinstruction CLASS measurement show attitudinal improvements through both semesters of an introductory physics sequence, as well as over the entire two-course sequence. In this Brief Report, we report positive shifts from the CLASS in one section of a modeling-based introductory physics sequence, for both mechanics (N=22) and electricity and magnetism (N=23). Using the CLASS results and follow up interviews, we examine how these results reflect on modeling instruction and the unique student community and population at FIU.
Resumo:
In the present article, two new types of PML/RARA junctions are described. Both were identified in diagnostic samples from two t(15;17)(q22;q21)-positive acute promyelocytic leukemia (APL) patients who failed to achieve complete remission. By using different sets of primers, reverse transcriptase polymerase chain reaction (RT-PCR) of PML/RARA junctions showed atypical larger bands compared with those generated from the three classical PML breakpoints already described. Sequence analysis of the fusion region of the amplified cDNAs allowed us to determine the specificity of these fragments in both patients. This analysis showed two new hybrid transcripts that were 53 and 306 base pairs (bp) longer than that expressed by the NB4 cell line (PML breakpoint within intron 6), and are the result of the direct joining of RARA exon 3 with PML exon 7a (patient 2) or the 5' portion of PML exon 7b (patient 1), respectively. In patient 1, RT-PCR analysis of the reciprocal RARA/PML junction showed a smaller transcript than that expected in bcr1 cases, while in patient 2 no amplified fragment was obtained. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) showed that both patients had the t(15;17) translocation. The clinical and hematological profiles expressed by the two patients carrying these unexpected types of PML/RARA rearrangement did not differ significantly from that commonly seen in other APLs with the exception of the poor outcome. Genes Chromosomes Cancer 27:35-43, 2000.
Resumo:
Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.