133 resultados para Posidonia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de la Dirección General de Caza, Protección de Especies y Educación Ambiental de la Consejería de Medio Ambiente del Gobierno de las Islas Baleares es la conservación de especies ya sean protegidas o cinegéticas, y la educación ambiental, es decir, favorecer actitudes positivas hacia el medio ambiente y trabajar por un futuro más sostenible. Este documento resume las actuaciones de esta dirección general. Se divide en tres partes: protección de especies, administración de la caza y educación ambiental. El apartado dedicado a la educación ambiental incluye las iniciativas siguientes: foro de educación ambiental de las Islas Baleares, Estrategia balear de educación ambiental, programa de centros ecoambientales, centro de educación ambiental de Binifaldó, visitas guiadas a los espacios naturales protegidos, aula móvil de educación ambiental, aula del mar, proyecto Life Posidonia, convenios con diferentes entidades para el fomento de la educación ambiental y otras actuaciones de educación ambiental.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen en catalán del autor

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El artículo forma parte de un monográfico dedicado a educación ambiental

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deakin University and the University of Tasmania were commissioned by Parks Victoria (PV) to create two updated habitat maps for areas within the Corner Inlet and Nooramunga Marine and Coastal Park and Ramsar area. The team obtained a ground-truth data set using in situ video and still photographs. This dataset was used to develop and assess predictive models of benthic marine habitat distributions incorporating data from both ALOS (Advanced Land Observation Satellite) imagery atmospherically corrected by CSIRO and LiDAR (Light Detection and Ranging) bathymetry. This report describes the results of the mapping effort as well as the methodology used to produce these habitat maps.

Overall accuracies of habitat classifications were good, returning overall accuracies >73 % and kappa values > 0.62 for both study localities. Habitats predicted with highest accuracies included Zosteraceae in Nooramunga (91 %), reef in Corner Inlet (80 %), and bare sediment (no-visible macrobiota/no-visible seagrass classes; both > 76 %). The majority of classification errors were due to the misclassification of areas of sparse seagrass as bare sediment. For the Corner Inlet study locality the no-visible macrobiota (10,698 ha), Posidonia (4,608 ha) and Zosteraceae (4,229 ha) habitat classes covered the most area. In Nooramunga no-visible seagrass (5,538 ha), Zosteraceae (4,060 ha) and wet saltmarsh (1,562 ha) habitat classes were most dominant.

In addition to the commissioned work preliminary change detection analyses were undertaken as part of this project. These analyses indicated shifts in habitat extents in both study localities since the late 1990s/2000. In particular, a post-classification analysis highlighted that there were considerable increases in seagrass habitat (primarily Zosteraceae) throughout the littoral zones and river/creek mouths of both study localities. Further, the numerous channel systems remained stable and were free of seagrass at both times. A substantial net loss of Posidonia in the Corner Inlet locality is likely but requires further investigation due to potential misclassifications between habitats in both the 1998 map (Roob et al. 1998) and the current mapping. While the unsupervised Independent Components Analysis (ICA) change detection technique indicated some changes in habitat extent and distribution, considerable areas of habitat change observed in the post-classification approach are questionable, and may reflect misclassifications rather than real change. A particular example of this is an apparent large decrease in Zosteraceae and increase in Posidonia being related to the classification of Posidonia beds as Zosteraceae in the 1998 mapping. Despite this, we believe that changes indicated by both the ICA and post-classification approaches have a high likelihood of being ‘actual’ change. A pattern of gains and losses of Zosteraceae in the region north of Stockyard channel is an example of this. Further analyses and refinements of approaches in change detection analyses such as would improve confidence in the location and extent of habitat changes over this time period.

This work has been successful in providing new baseline maps using a repeatable method meaning that any future changes in intertidal and shallow water marine habitats may be assessed in a consistent way with quantitative error assessments. In wider use, these maps should also allow improved conservation planning, advance fisheries and catchment management, and progress infrastructure planning to limit impacts on the Inlet environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building on a habitat mapping project completed in 2011, Deakin University was commissioned by Parks Victoria (PV) to apply the same methodology and ground-truth data to a second, more recent and higher resolution satellite image to create habitat maps for areas within the Corner Inlet and Nooramunga Marine and Coastal Park and Ramsar area. A ground-truth data set using in situ video and still photographs was used to develop and assess predictive models of benthic marine habitat distributions incorporating data from both RapidEye satellite imagery (corrected for atmospheric and water column effects by CSIRO) and LiDAR (Light Detection and Ranging) bathymetry. This report describes the results of the mapping effort as well as the methodology used to produce these habitat maps.

Overall accuracies of habitat classifications were good, with error rates similar to or better than the earlier classification (>73 % and kappa values > 0.58 for both study localities). The RapidEye classification failed to accurately detect Pyura and reef habitat classes at the Corner Inlet locality, possibly due to differences in spectral frequencies. For comparison, these categories were combined into a ‘non-seagrass’ category, similar to the one used at the Nooramunga locality in the original classification. Habitats predicted with highest accuracies differed from the earlier classification and were Posidonia in Corner Inlet (89%), and bare sediment (no-visible seagrass class) in Nooramunga (90%). In the Corner Inlet locality reef and Pyura habitat categories were not distinguishable in the repeated classification and so were combined with bare sediments. The majority of remaining classification errors were due to the misclassification of Zosteraceae as bare sediment and vice versa. Dominant habitats were the same as those from the 2011 classification with some differences in extent. For the Corner Inlet study locality the no-visible seagrass category remained the most extensive (9059 ha), followed by Posidonia (5,513 ha) and Zosteraceae (5,504 ha). In Nooramunga no-visible seagrass (6,294 ha), Zosteraceae (3,122 ha) and wet saltmarsh (1,562 ha) habitat classes were most dominant.

Change detection analyses between the 2009 and 2011 imagery were undertaken as part of this project, following the analyses presented in Monk et al. (2011) and incorporating error estimates from both classifications. These analyses indicated some shifts in classification between Posidonia and Zosteraceae as well as a general reduction in the area of Zosteraceae. Issues with classification of mixed beds were apparent, particularly in the main Posidonia bed at Nooramunga where a mosaic of Zosteraceae and Posidonia was seen that was not evident in the ALOS classification. Results of a reanalysis of the 1998-2009 change detection illustrating effects of binning of mixed beds is also provided as an appendix.

This work has been successful in providing baseline maps at an improved level of detail using a repeatable method meaning that any future changes in intertidal and shallow water marine habitats may be assessed in a consistent way with quantitative error assessments. In wider use, these maps should also allow improved conservation planning, advance fisheries and catchment management, and progress infrastructure planning to limit impacts on the Inlet environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrasses are ecosystem engineers that offer important habitat for a large number of species and provide a range of ecosystem services. Many seagrass ecosystems are dominated by a single species, with research showing that genotypic diversity at fine spatial scales plays an important role in maintaining a range of ecosystem functions. However, for most seagrass species, information on fine-scale patterns of genetic variation in natural populations is lacking. In this study, we use a hierarchical sampling design to determine the levels of genetic and genotypic diversity at different spatial scales (centimeters, meters, kilometers) in the Australian seagrass Zostera muelleri. Our analysis shows that at fine spatial scales (<1 m), levels of genotypic diversity are relatively low (R(Plots) = 0.37 ± 0.06 SE), although there is some intermingling of genotypes. At the site (10’s m) and meadow location (km) scale, we found higher levels of genotypic diversity (R(sites) = 0.79 ± 0.04 SE; R(Locations) = 0.78 ± 0.04 SE). We found some sharing of genotypes between sites within meadows, but no sharing of genotypes between meadow locations. We also detected a high level of genetic structuring between meadow locations (FST = 0.278). Taken together, our results indicate that both sexual and asexual reproductions are important in maintaining meadows of Z. muelleri. The dominant mechanism of asexual reproduction appears to occur via localized rhizome extension, although the sharing of a limited number of genotypes over the scale of 10’s of meters could also result from the localized dispersal and recruitment of fragments. The large number of unique genotypes at the meadow scale indicates that sexual reproduction is important in maintaining these populations, while the high level of genetic structuring suggests little gene flow and connectivity between our study sites. These results imply that recovery from disturbances will occur through both sexual and asexual regeneration, but the limited connectivity at the landscape scale implies that recovery at meadow-scale losses is likely to be limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (Corg) content in terrestrial soils and marine sediments has been correlated with mud content (i.e. silt and clay), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n = 1345) on the relationship between Corg and mud (i.e. silt and clay, particle sizes <63 μm) contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil Corg content. We also combined these data with the δ13C signatures of the soil Corg to understand the sources of Corg stores. The results showed that mud is positively correlated with soil Corg content only when the contribution of seagrass-derived Corg to the sedimentary Corg pool is relatively low, such as in small and fast growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil Corg content, related to a higher contribution of seagrass-derived Corg to the sedimentary Corg pool in these meadows. The relative high soil Corg contents with relatively low mud contents (i.e. mud-Corg saturation) together with significant allochthonous inputs of terrestrial organic matter could overall disrupt the correlation expected between soil Corg and mud contents. This study shows that mud (i.e. silt and clay content) is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil Corg content for scaling up purposes when opportunistic and/or low biomass seagrass species (i.e. Zostera, Halodule and Halophila) are present (explaining 34 to 91% of variability), and in bare sediments (explaining 78% of the variability).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many marine ecosystems have the capacity for long-term storage of organic carbon (C) in what are termed "blue carbon" systems. While blue carbon systems (saltmarsh, mangrove, and seagrass) are efficient at long-term sequestration of organic carbon (C), much of their sequestered C may originate from other (allochthonous) habitats. Macroalgae, due to their high rates of production, fragmentation, and ability to be transported, would also appear to be able to make a significant contribution as C donors to blue C habitats. In order to assess the stability of macroalgal tissues and their likely contribution to long-term pools of C, we applied thermogravimetric analysis (TGA) to 14 taxa of marine macroalgae and coastal vascular plants. We assessed the structural complexity of multiple lineages of plant and tissue types with differing cell wall structures and found that decomposition dynamics varied significantly according to differences in cell wall structure and composition among taxonomic groups and tissue function (photosynthetic vs. attachment). Vascular plant tissues generally exhibited greater stability with a greater proportion of mass loss at temperatures > 300 degrees C (peak mass loss -320 degrees C) than macroalgae (peak mass loss between 175-300 degrees C), consistent with the lignocellulose matrix of vascular plants. Greater variation in thermogravimetric signatures within and among macroalgal taxa, relative to vascular plants, was also consistent with the diversity of cell wall structure and composition among groups. Significant degradation above 600 degrees C for some macroalgae, as well as some belowground seagrass tissues, is likely due to the presence of taxon-specific compounds. The results of this study highlight the importance of the lignocellulose matrix to the stability of vascular plant sources and the potentially significant role of refractory, taxon-specific compounds (carbonates, long-chain lipids, alginates, xylans, and sulfated polysaccharides) from macroalgae and seagrasses for their long-term sedimentary C storage. This study shows that marine macroalgae do contain refractory compounds and thus may be more valuable to long-term carbon sequestration than we previously have considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article documents the addition of 268 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alburnoides bipunctatus, Chamaerops humilis, Chlidonias hybrida, Cyperus papyrus, Fusarium graminearum, Loxigilla barbadensis, Macrobrachium rosenbergii, Odontesthes bonariensis, Pelteobagrus vachelli, Posidonia oceanica, Potamotrygon motoro, Rhamdia quelen, Sarotherodon melanotheron heudelotii, Sibiraea angustata, Takifugu rubripes, Tarentola mauritanica, Trimmatostroma sp. and Wallago attu. These loci were cross-tested on the following species: Alburnoides fasciatus, Alburnoides kubanicus, Alburnoides maculatus, Alburnoides ohridanus, Alburnoides prespensis, Alburnoides rossicus, Alburnoides strymonicus, Alburnoides thessalicus, Alburnoides tzanevi, Carassius carassius, Fusarium asiaticum, Leucaspius delineatus, Loxigilla noctis dominica, Pelecus cultratus, Phoenix canariensis, Potamotrygon falkneri, Trachycarpus fortune and Vimba vimba. © 2013 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Plant Tissue Culture, also called “micropropagation”, is the propagation of plants from different tissues (or explants) in a shorter time than conventional propagation, making use of the ability that many plant cells have to regenerate a whole plant (totipotency).There are two alternative mechanisms by which an explant can regenerate an entire plant, namely organogenesis and somatic embryogenesis. Since the last decades, the number of higher terrestrial plants species from which these techniques have been successfully applied has continually increased. However, few attempts have been carried out in marine plants. Previous seagrasses authors have focused their studies on i) vegetative propagation of rhizome fragments as explants in Ruppia maritima, Halophila engelmannii, Cymodocea nodosa and Posidonia oceanica; ii) culture of meristems in Heterozostera tasmanica, C. nodosa or P. oceanica; and iii) culture of germinated seeds on aseptic conditions, in Thalassia testudinum, H. ovalis, P. coriacea, P. oceanica, and H. decipiens. All these studies determine the most adequate culture medium for each species (seawater, nutrients, vitamins, carbon sources, etc...), often supplemented with different plant growth regulators and the necessary conditions for the culture maintenance, such as light and temperature. On the other hand, several studies have previously established protocols for cell or protoplast isolation in the species Zostera marina, Z. muelleri, P. oceanica, and C. nodosa, using shoots collected from natural meadows as original vegetal source, but further cell growth was never accomplished. Due to the absence of somatic embryogenesis or organogenetic studies in seagrasses we wonder: IS THE SUCCESSFUL APPLICATION OF TISSUE CULTURE TECHNIQUES POSSIBLE IN SEAGRASSES?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity (‘species density’ = number of species per area and ‘species richness’ = number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La gestione di sorgenti multiple di disturbo in AMP: il caso delle Isole Tremiti Il seguente lavoro di tesi valuta l’efficacia di protezione di un’area marina protetta (AMP) sui popolamenti di differenti habitat compresi in zone a diverso regime di tutela. Questo tema è molto sentito sia dal punto di vista scientifico, poiché le AMP rappresentano uno esperimento di esclusione delle attività antropiche ad ampia scala, sia dal punto di vista socio-economico per l’interesse che sono in grado di generare nelle comunità locali. Tuttavia, ad oggi, gli studi che abbiano dimostrato l’efficacia di protezione delle AMP sono pochi e sono per lo più diretti sulle specie di maggior interesse commerciale. In generale, c’è un’evidente mancanza di protezione in molte AMP del Mediterraneo e di aree extra-mediterranee che può essere attribuita a diversi fattori, tra cui le caratteristiche fisiche dei siti dove sono state istituite, le modalità di gestione e le numerose attività illegali che vengono svolte all’interno dei loro confini. Inoltre, nelle aree protette, spesso, anche le attività lecite non sono adeguatamente regolamentate, limitando ulteriormente il perseguimento degli obiettivi istitutivi e la tutela della biodiversità marina. Testare le ipotesi sull’efficacia di protezione delle AMP è, quindi, di fondamentale importanza per capire quali tipi di impatti sono maggiormente presenti e per poter fornire agli Enti gestori informazioni utili per migliorare l’amministrazione delle AMP. In particolare, l’AMP dell’arcipelago delle Isole Tremiti, istituita da oltre venti anni, è un’area protetta che presenta molte criticità, come dimostrato in precedenti campagne di monitoraggio condotte dal Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa). In questo contesto, la presente tesi è stata sviluppata con lo scopo di quantificare l’effetto della regolamentazione di diverse attività umane sui popolamenti del subtidale, della frangia e delle praterie di Posidonia oceanica nell’AMP delle Isole Tremiti a diverse scale spaziali per un periodo di circa dieci anni. Questo lavoro, inoltre, rientra in un progetto finanziato dal Ministero dell’Ambiente e della Tutela del Territorio e del Mare al CoNISMa volto ad impostare un’attività di monitoraggio sperimentale e di mitigazione in questa AMP. I campionamenti sono stati condotti tra Giugno e Settembre 2010 e i dati raccolti sono stati integrati a quelli ottenuti nei precedenti monitoraggi svolti nelle Isole Tremiti. I risultati hanno mostrato che: 1) ci sono differenze significative consistenti nel tempo tra il subtidale dell’isola di Pianosa e quello delle altre isole dell’arcipelago; 2) i popolamenti nella frangia di Pianosa, di San Domino e di Caprara non presentano differenze significative; 3) c’è un’elevata variabilità a scala di sito nelle praterie di Posidonia oceanica, ma non si osserva una differenza tra località protette ed impattate. La differenza riscontrata nel subtidale tra zona a protezione integrale (Pianosa) e le altre isole dell’arcipelago (controlli) non è però attribuibile ad un effetto della protezione. Infatti, il subtidale di Pianosa è caratterizzato da un barren molto esteso con elevate percentuali di spugne rosse incrostanti, di alghe rodoficee incrostanti e di ricci di mare, mentre nelle isole di San Domino e di Caprara c’è una maggiore diversità data da alghe corallinacee articolate, alghe erette, idrozoi, ascidiacei e numerose spugne. Diversi fattori possono aver agito nel determinare questo risultato, ma molto probabilmente la cospicua attività di pesca illegale che viene praticata a Pianosa combinata all’attività di grazing degli erbivori, non controllati dai predatori, limita il recupero dei popolamenti. Al contrario, l’assenza di differenze nei popolamenti della frangia delle tre isole campionate fa ipotizzare la mancanza di impatti diretti (principalmente il calpestio) su questo habitat. Per quanto riguarda la Posidonia oceanica i risultati suggeriscono che si stia verificando un ancoraggio indiscriminato su tutte le praterie delle Isole Tremiti e che molto probabilmente si tratta di praterie in forte regressione, come indicano anche le ricerche condotte dall’Università di Bari. C’è bisogno, tuttavia, di ulteriori studi che aiutino a comprendere meglio la variabilità nella riposta dei popolamenti in relazione alle diverse condizioni ambientali e al diverso sforzo di gestione. In conclusione, dai risultati ottenuti, emerge chiaramente come anche nell’AMP delle Isole Tremiti, ci sia una scarsa efficacia di protezione, così come è stato rilevato per la maggior parte delle AMP italiane. Per risolvere le costanti conflittualità che perdurano nelle Isole Tremiti e che non permettono il raggiungimento degli obiettivi istitutivi dell’AMP, è assolutamente necessario, oltre che far rispettare la regolamentazione vigente incrementando il numero di guardacoste sull’isola durante tutto l’anno, procedere, eventualmente, ad una rizonizzazione dell’AMP e sviluppare un piano di gestione in accordo con la popolazione locale adeguatamente sensibilizzata. Solo in questo modo sarà possibile ridurre le numerose attività illegali all’interno dell’AMP, e, allo stesso tempo, rendere gli stessi cittadini una componente imprescindibile della conservazione di questo arcipelago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale: Coralligenous habitat is considered the second most important subtidal “hot spot” of species diversity in the Mediterranean Sea after the Posidonia oceanica meadows. It can be defined as a typical Mediterranean biogenic hard bottom, mainly produced by the accumulation of calcareous encrusting algae that, together with other builder organisms, form a multidimensional framework with a high micro-spatial variability. The development of this habitat depends on physical factors (i.e. light, hydrodynamism, nutrients, etc.), but also biologic interactions can play a relevant role in structuring the benthic assemblages. This great environmental heterogeneity allows several different assemblages to coexist in a reduced space. One of the most beautiful is that characterised by the Mediterranean gorgonian Paramuricea clavata (Risso, 1826) that can contribute to above 40% of total biomass of the community and brings significant structural complexity into the coralligenous habitat. In sites moderately exposed to waves and currents, P. clavata can form high-density populations (up to 60 colonies m-2) between 20 – 70 m in depth. Being a suspension feeder, where it forms dense populations, P. clavata plays a significant role in transferring energy from planktonic to benthic system. The effects of the branched colonies of P. clavata could be comparable to those of the forests on land. They can affect the micro scale hydrodynamism and light, promoting or inhibiting the growth of other species. Unfortunately, gorgonians are threatened by several anthropogenic disturbance factors (i.e. fishing, pollution, tourism) and by climatic anomalies, linked to the global changes, that are responsible of thermal stress, development of mucilage and enhanced pathogens activity, leading to mass mortality events in last decades. Till now, the possible effects of gorgonian forest loss are largely unknown. Our goal was to analyse the ecological role of these sea fan forests on the coralligenous benthic assemblages. Experimental setup and main results: The influence of P. clavata in the settlement and recruitment of epibenthic organisms was analysed by a field experiment carried out in two randomly selected places: Tavolara island and Portofino promontory. The experiment consisted in recreate the presence and absence of the gorgonian forest on recruitment panels, arranged in four plots per type (forested and non-forested), interspersed each other, and deployed at the same depth. On every forested panel 3 gorgonian colonies about 20 cm height were grafted with the use of Eppendorf tubes and epoxy resin bicomponent simulating a density of 190 sea fans per m-2. This density corresponds to a mean biomass of 825 g DW m-2,3 which is of the same order of magnitude of the natural high-density populations. After about 4 months, the panels were collected and analysed in laboratory in order to estimate the percent cover of all the species that have colonized the substrata. The gorgonian forest effects were tested by multivariate and univariate permutational analyses of the variance (PERMANOVA). Recruited assemblages largely differed between the two study sites, probably due to different environmental conditions including water quality and turbidity. On overall, the presence of P. clavata reduced the settlement and recruitment of several algae: the shadow caused by the gorgonian might reduce light availability and therefore their growth. This effect might be greater in places where the waters are on average more clear, since at Portofino it is less visible and could be masked by the high turbidity of the water. The same pattern was registered for forams, more abundant outside gorgonian forest, probably linked with algal distribution, shadowing effect or alimentary competition. The last one hypothesis could be valid also for serpulids polychaetes that growth mainly on non-forested panels. An opposite trend, was showed by a species of bryozoan and by an hydroid that is facilitated by the presence of P. clavata, probably because it attenuates irradiance level and hydrodynamism. Species diversity was significantly reduced by the presence of P. clavata forests at both sites. This seems in contrast with what we expected, but the result may be influenced by the large algal component on non-forested panels. The analysis confirmed the presence of differences in the species diversity among plots and between sites respectively due to natural high variability of the coralligenous system and to different local environment conditions. The reduction of species diversity due to the presence of gorgonians appeared related to a worst evenness rather than to less species richness. With our experiment it is demonstrated that the presence of P. clavata forests can significantly alter local coralligenous assemblages patterns, promoting or inhibiting the recruitment of some species, modifying trophic relationships and adding heterogeneity and complexity to the habitat. Moreover, P. clavata could have a stabilising effect on the coralligenous assemblages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis describes the molluscan biodiversity of the infralittoral off-shore reefs in the "Secche di Tor Paterno" marine protected area lying in the Central Tyrrhenian Sea off the coasts of Lazio south of Roma. Data originate from underwater sampling activities carried out by SCUBA diving in four biocoenoses: Posidonia oceanica leaves and rhizomes, coralligenous concretions and detritic pools. The representativeness of molluscs as descriptors of biocoenoses is evaluated by preliminary comparisons with data about Polychaeta, Pleocyemata (Crustacea) and Brachiopoda obtained in the same survey. The malacocoenoses of the four biocoenoses are treated in detail. Then data are compared with other data sets to assess differences and similarities with other communities. The agreement between death and living assemblages in the reefs is evaluated for the Posidonia oceanica and the coralligenous biocoenosis and was carried out by a set of standard metrics and some benthic ecology methods. Molluscs perform very well as descriptors of biocoenoses, better than the other phyla. The molluscan assemblages of the reefs are very rich in species despite richness is mainly concentrated in the coralligenous and in the rhizomes of Posidonia oceanica. The leaves of Posidonia oceanica host a rather poor assemblage. Detritic pools host a poor but peculiar species assemblage. The dead-live agreement showed that death assemblages are highly representative of sediments of nearby biocoenoses as a result of low bottom transport. Fidelity metrics suggest a good agreement between the living and death assemblages when species richness and taxonomic composition are considered. The study suggests that fidelity is lower when considering the species dominance. These differences could be associated to the trophism of species and possibly to the species life span.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Profiles of Mo/total organic carbon (TOC) through the Lower Toarcian black shales of the Cleveland Basin, Yorkshire, United Kingdom, and the Posidonia shale of Germany and Switzerland reveal water mass restriction during the interval from late tenuicostatum Zone times to early bifrons Zone times, times which include that of the putative Early Toarcian oceanic anoxic event. The degree of restriction is revealed by crossplots of Mo and TOC concentrations for the Cleveland Basin, which define two linear arrays with regression slopes (ppm/%) of 0.5 and 17. The slope of 0.5 applies to sediment from the upper semicelatum and exaratum Subzones. This value, which is one tenth of that for modern sediments from the Black Sea (Mo/TOC regression slope 4.5), reveals that water mass restriction during this interval was around 10 times more severe than in the modern Black Sea; the renewal frequency of the water mass was between 4 and 40 ka. The Mo/TOC regression slope of 17 applies to the overlying falciferum and commune subzones: the value shows that restriction in this interval was less severe and that the renewal frequency of the water mass was between 10 and 130 years. The more restricted of the two intervals has been termed the Early Toarcian oceanic anoxic event but is shown to be an event caused by basin restriction local to NW Europe. Crossplots of Re, Os, and Mo against TOC show similar trends of increasing element concentration with increase in TOC but with differing slopes. Together with modeling of 187Os/188Os and d98Mo, the element/TOC trends show that drawdown of Re, Os, and Mo was essentially complete during upper semicelatum and exaratum Subzone times (Mo/TOC regression slope of 0.5). Drawdown sensitized the restricted water mass to isotopic change forced by freshwater mixing so that continental inputs of Re, Os, and Mo, via a low-salinity surface layer, created isotopic excursions of up to 1.3 per mil in d98Mo and up to 0.6 per mil for 187Os/188Os. Restriction thereby compromises attempts to date Toarcian black shales, and possibly all black shales, using Re-Os chronology and introduces a confounding influence in the attempts to use d98Mo and initial 187Os/188Os for palaeo-oceanographic interpretation.