911 resultados para Population genetics


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An understanding of inheritance requires comprehension of genetic processes at all levels, from molecules to populations. Frequently genetics courses are separated into molecular and organismal genetics and students may fail to see the relationships between them. This is particularly true with human genetics, because of the difficulties in designing experimental approaches which are consistent with ethical restrictions, student abilities and background knowledge, and available time and materials. During 2005 we used analysis of single nucleotide polymorphisms (SNPs) in two genetic regions to enhance student learning and provide a practical experience in human genetics. Students scanned databases to discover SNPs in a gene of interest, used software to design PCR primers and a restriction enzyme based assay for the alleles, and carried out an analysis of the SNP on anonymous individual and family DNAs. The project occupied eight to ten hours per week for one semester, with some time spent in the laboratory and some spent in database searching, reading and writing the report. In completing their projects, students acquired a knowledge of Mendel’s first law (through looking at inheritance patterns), Mendel’s second law and the exceptions (the concepts of linkage and linkage disequilibrium), DNA structure (primer design and restriction enzyme analysis) and function (SNPs in coding and non-coding regions), population genetics and the statistical analysis of allele frequencies, genomics, bioinformatics and the ethical issues associated with the use of human samples. They also developed skills in presentation of results by publication and conference participation. Deficiencies in their understanding (for example of inheritance patterns, gene structure, statistical approaches and report writing) were detected and guidance given during the project. SNP analysis was found to be a powerful approach to enhance and integrate student understanding of genetic concepts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Speciation can be understood as a continuum occurring at different levels, from population to species. The recent molecular revolution in population genetics has opened a pathway towards understanding species evolution. At the same time, speciation patterns can be better explained by incorporating a geographic context, through the use of geographic information systems (GIS). Phaedranassa (Amaryllidaceae) is a genus restricted to one of the world’s most biodiverse hotspots, the Northern Andes. I studied seven Phaedranassa species from Ecuador. Six of these species are endemic to the country. The topographic complexity of the Andes, which creates local microhabitats ranging from moist slopes to dry valleys, might explain the patterns of Phaedranassa species differentiation. With a Bayesian individual assignment approach, I assessed the genetic structure of the genus throughout Ecuador using twelve microsatellite loci. I also used bioclimatic variables and species geographic coordinates under a Maximum Entropy algorithm to generate distribution models of the species. My results show that Phaedranassa species are genetically well-differentiated. Furthermore, with the exception of two species, all Phaedranassa showed non-overlapping distributions. Phaedranassa viridiflora and P. glauciflora were the only species in which the model predicted a broad species distribution, but genetic evidence indicates that these findings are likely an artifact of species delimitation issues. Both genetic differentiation and nonoverlapping geographic distribution suggest that allopatric divergence could be the general model of genetic differentiation. Evidence of sympatric speciation was found in two geographically and genetically distinct groups of P. viridiflora. Additionally, I report the first register of natural hybridization for the genus. The findings of this research show that the genetic differentiation of species in an intricate landscape as the Andes does not necessarily show a unique trend. Although allopatric speciation is the most common form of speciation, I found evidence of sympatric speciation and hybridization. These results show that the processes of speciation in the Andes have followed several pathways. The mixture of these processes contributes to the high biodiversity of the region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La population canadienne-française a une histoire démographique unique faisant d’elle une population d’intérêt pour l’épidémiologie et la génétique. Cette thèse vise à mettre en valeur les caractéristiques de la population québécoise qui peuvent être utilisées afin d’améliorer la conception et l’analyse d’études d’épidémiologie génétique. Dans un premier temps, nous profitons de la présence d’information généalogique détaillée concernant les Canadiens français pour estimer leur degré d’apparentement et le comparer au degré d’apparentement génétique. L’apparentement génétique calculé à partir du partage génétique identique par ascendance est corrélé à l’apparentement généalogique, ce qui démontre l'utilité de la détection des segments identiques par ascendance pour capturer l’apparentement complexe, impliquant entre autres de la consanguinité. Les conclusions de cette première étude pourront guider l'interprétation des résultats dans d’autres populations ne disposant pas d’information généalogique. Dans un deuxième temps, afin de tirer profit pleinement du potentiel des généalogies canadienne-françaises profondes, bien conservées et quasi complètes, nous présentons le package R GENLIB, développé pour étudier de grands ensembles de données généalogiques. Nous étudions également le partage identique par ascendance à l’aide de simulations et nous mettons en évidence le fait que la structure des populations régionales peut faciliter l'identification de fondateurs importants, qui auraient pu introduire des mutations pathologiques, ce qui ouvre la porte à la prévention et au dépistage de maladies héréditaires liées à certains fondateurs. Finalement, puisque nous savons que les Canadiens français ont accumulé des segments homozygotes, à cause de la présence de consanguinité lointaine, nous estimons la consanguinité chez les individus canadiens-français et nous étudions son impact sur plusieurs traits de santé. Nous montrons comment la dépression endogamique influence des traits complexes tels que la grandeur et des traits hématologiques. Nos résultats ne sont que quelques exemples de ce que nous pouvons apprendre de la population canadienne-française. Ils nous aideront à mieux comprendre les caractéristiques des autres populations de même qu’ils pourront aider la recherche en épidémiologie génétique au sein de la population canadienne-française.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La population canadienne-française a une histoire démographique unique faisant d’elle une population d’intérêt pour l’épidémiologie et la génétique. Cette thèse vise à mettre en valeur les caractéristiques de la population québécoise qui peuvent être utilisées afin d’améliorer la conception et l’analyse d’études d’épidémiologie génétique. Dans un premier temps, nous profitons de la présence d’information généalogique détaillée concernant les Canadiens français pour estimer leur degré d’apparentement et le comparer au degré d’apparentement génétique. L’apparentement génétique calculé à partir du partage génétique identique par ascendance est corrélé à l’apparentement généalogique, ce qui démontre l'utilité de la détection des segments identiques par ascendance pour capturer l’apparentement complexe, impliquant entre autres de la consanguinité. Les conclusions de cette première étude pourront guider l'interprétation des résultats dans d’autres populations ne disposant pas d’information généalogique. Dans un deuxième temps, afin de tirer profit pleinement du potentiel des généalogies canadienne-françaises profondes, bien conservées et quasi complètes, nous présentons le package R GENLIB, développé pour étudier de grands ensembles de données généalogiques. Nous étudions également le partage identique par ascendance à l’aide de simulations et nous mettons en évidence le fait que la structure des populations régionales peut faciliter l'identification de fondateurs importants, qui auraient pu introduire des mutations pathologiques, ce qui ouvre la porte à la prévention et au dépistage de maladies héréditaires liées à certains fondateurs. Finalement, puisque nous savons que les Canadiens français ont accumulé des segments homozygotes, à cause de la présence de consanguinité lointaine, nous estimons la consanguinité chez les individus canadiens-français et nous étudions son impact sur plusieurs traits de santé. Nous montrons comment la dépression endogamique influence des traits complexes tels que la grandeur et des traits hématologiques. Nos résultats ne sont que quelques exemples de ce que nous pouvons apprendre de la population canadienne-française. Ils nous aideront à mieux comprendre les caractéristiques des autres populations de même qu’ils pourront aider la recherche en épidémiologie génétique au sein de la population canadienne-française.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential restriction to effective dispersal and gene flow caused by habitat fragmentation can apply to multiple levels of evolutionary scale; from the fragmentation of ancient supercontinents driving diversification and speciation on disjunct landmasses, to the isolation of proximate populations as a result of their inability to cross intervening unsuitable habitat. Investigating the role of habitat fragmentation in driving diversity within and among taxa can thus include inferences of phylogenetic relationships among taxa, assessments of intraspecific phylogeographic structure and analyses of gene flow among neighbouring populations. The proposed Gondwanan clade within the chironomid (non-biting midge) subfamily Orthocladiinae (Diptera: Chironomidae) represents a model system for investigating the role that population fragmentation and isolation has played at different evolutionary scales. A pilot study by Krosch et al (2009) indentified several highly divergent lineages restricted to ancient rainforest refugia and limited gene flow among proximate sites within a refuge for one member of this clade, Echinocladius martini Cranston. This study provided a framework for investigating the evolutionary history of this taxon and its relatives more thoroughly. Populations of E. martini were sampled in the Paluma bioregion of northeast Queensland to investigate patterns of fine-scale within- and among-stream dispersal and gene flow within a refuge more rigorously. Data was incorporated from Krosch et al (2009) and additional sites were sampled up- and downstream of the original sites. Analyses of genetic structure revealed strong natal site fidelity and high genetic structure among geographically proximate streams. Little evidence was found for regular headwater exchange among upstream sites, but there was distinct evidence for rare adult flight among sites on separate stream reaches. Overall, however, the distribution of shared haplotypes implied that both larval and adult dispersal was largely limited to the natal stream channel. Patterns of regional phylogeographic structure were examined in two related austral orthoclad taxa – Naonella forsythi Boothroyd from New Zealand and Ferringtonia patagonica Sæther and Andersen from southern South America – to provide a comparison with patterns revealed in their close relative E. martini. Both taxa inhabit tectonically active areas of the southern hemisphere that have also experienced several glaciation events throughout the Plio-Pleistocene that are thought to have affected population structure dramatically in many taxa. Four highly divergent lineages estimated to have diverged since the late Miocene were revealed in each taxon, mirroring patterns in E. martini; however, there was no evidence for local geographical endemism, implying substantial range expansion post-diversification. The differences in pattern evident among the three related taxa were suggested to have been influenced by variation in the responses of closed forest habitat to climatic fluctuations during interglacial periods across the three landmasses. Phylogeographic structure in E. martini was resolved at a continental scale by expanding upon the sampling design of Krosch et al (2009) to encompass populations in southeast Queensland, New South Wales and Victoria. Patterns of phylogeographic structure were consistent with expectations and several previously unrecognised lineages were revealed from central- and southern Australia that were geographically endemic to closed forest refugia. Estimated divergence times were congruent with the timing of Plio-Pleistocene rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow of E. martini among isolated refugia was highly restricted and that this taxon was susceptible to the impacts of habitat change. Broader phylogenetic relationships among taxa considered to be members of this Gondwanan orthoclad group were resolved in order to test expected patterns of evolutionary affinities across the austral continents. The inferred phylogeny and estimated divergence times did not accord with expected patterns based on the geological sequence of break-up of the Gondwanan supercontinent and implied instead several transoceanic dispersal events post-vicariance. Difficulties in appropriate taxonomic sampling and accurate calibration of molecular phylogenies notwithstanding, the sampling regime implemented in the current study has been the most intensive yet performed for austral members of the Orthocladiinae and unsurprisingly has revealed both novel taxa and phylogenetic relationships within and among described genera. Several novel associations between life stages are made here for both described and previously unknown taxa. Investigating evolutionary relationships within and among members of this clade of proposed Gondwanan orthoclad taxa has demonstrated that a complex interaction between historical population fragmentation and dispersal at several levels of evolutionary scale has been important in driving diversification in this group. While interruptions to migration, colonisation and gene flow driven by population fragmentation have clearly contributed to the development and maintenance of much of the diversity present in this group, long-distance dispersal has also played a role in influencing diversification of continental biotas and facilitating gene flow among disjunct populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we explore the population genetics of the Russian wheat aphid (RWA) (Diuraphis noxia), one of the world’s most invasive agricultural pests, in north-western China. We have analysed the data of 10 microsatellite loci and mitochondrial sequences from 27 populations sampled over 2 years in China. The results confirm that the RWAs are holocyclic in China with high genetic diversity indicating widespread sexual reproduction. Distinct differences in microsatellite genetic diversity and distribution revealed clear geographic isolation between RWA populations in northern and southern Xinjiang, China, with gene flow interrupted across extensive desert regions. Despite frequent grain transportation from north to south in this region, little evidence for RWA translocation as a result of human agricultural activities was found. Consequently, frequent gene flow among northern populations most likely resulted from natural dispersal, potentially facilitated by wind currents. We also found evidence for the longterm existence and expansion of RWAs in China, despite local opinion that it is an exotic species only present in China since 1975. Our estimated date of RWA expansion throughout China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. We conclude that western China represents the limit of the far eastern native range of this species. This study is the most comprehensive molecular genetic investigation of the RWA in its native range undertaken to date and provides valuable insights into the history of the association of this aphid with domesticated cereals and wild grasses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Migraine is a common neurological disorder characterised by debilitating head pain and an assortment of additional symptoms which can include nausea, emesis, photophobia, phonophobia and occasionally visual sensory disturbances. Migraine is a complex disease caused by an interplay between predisposing genetic variants and environmental factors. It affects approximately 12 % of studied Caucasian populations with affected individuals being predominantly female. Genes involved in neurological, vascular or hormonal pathways have all been implicated in predisposition towards developing migraine. All of these are nuclear encoded genes, but given the role of mitochondria in a number of neurological disorders and in energy production it is possible that mitochondrial variants may play a role in the pathogenesis of this disease. Mitochondrial DNA has been a useful tool for studying population genetics and human genetic diseases due to the clear inheritance shown through successive generations. Given the clear gender bias found in migraine patients it may be important to investigate X-linked inheritance and mitochondrial-related variants in this disorder. This paper explores the possibility that mitochondrial DNA changes may play a role in migraine. Few variants in the mitochondrial genome have so far been investigated in migraine and new studies should be aimed towards investigating the role of mitochondrial DNA in this common disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the population genetics, demographic history and pathway of invasion of the Russian wheat aphid (RWA) from its native range in Central Asia, the Middle East and Europe to South Africa and the Americas. We screened microsatellite markers, mitochondrial DNA and endosymbiont genes in 504 RWA clones from nineteen populations worldwide. Following pathway analyses of microsatellite and endosymbiont data, we postulate that Turkey and Syria were the most likely sources of invasion to Kenya and South Africa, respectively. Furthermore, we found that one clone transferred between South Africa and the Americas was most likely responsible for the New World invasion. Finally, endosymbiont DNA was found to be a high resolution population genetic marker, extremely useful for studies of invasion over a relatively short evolutionary history time frame. This study has provided valuable insights into the factors that may have facilitated the recent global invasion by this damaging pest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herbarium accession data offer a useful historical botanical perspective and have been used to track the spread of plant invasions through time and space. Nevertheless, few studies have utilised this resource for genetic analysis to reconstruct a more complete picture of historical invasion dynamics, including the occurrence of separate introduction events. In this study, we combined nuclear and chloroplast microsatellite analyses of contemporary and historical collections of Senecio madagascariensis, a globally invasive weed first introduced to Australia c. 1918 from its native South Africa. Analysis of nuclear microsatellites, together with temporal spread data and simulations of herbarium voucher sampling, revealed distinct introductions to south-eastern Australia and mid-eastern Australia. Genetic diversity of the south-eastern invasive population was lower than in the native range, but higher than in the mid-eastern invasion. In the invasive range, despite its low resolution, our chloroplast microsatellite data revealed the occurrence of new haplotypes over time, probably as the result of subsequent introduction(s) to Australia from the native range during the latter half of the 20th century. Our work demonstrates how molecular studies of contemporary and historical field collections can be combined to reconstruct a more complete picture of the invasion history of introduced taxa. Further, our study indicates that a survey of contemporary samples only (as undertaken for the majority of invasive species studies) would be insufficient to identify potential source populations and occurrence of multiple introductions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Veugelers et al. (July 29 issue)1 report on patients with the trismus–pseudocamptodactyly syndrome as having a “Carney complex variant.” Among more than 500 patients with the Carney complex in our database, there are none with the trismus–pseudocamptodactyly syndrome.2,3...