225 resultados para Polypyrrole (PPy)
Resumo:
A conducting polypyrrole film immobilized with PMo12O403- anion on a glassy carbon electrode was prepared by an electrochemical method. This kind of chemically modified electrode (CME) was prepared successfully by doping the polypyrrole film electrode wit
Resumo:
Polypyrrole doped with p-toluenesulfonate was electropolymerized onto highly oriented pyrolytic graphite (HOPG), glassy carbon (GC) and Pt electrode surfaces under the same experimental conditions. The resulting films were studied by scanning tunneling m
Resumo:
Functionalized polypyrrole films were prepared electrochemically in the presence of indigo-carmine from aqueous solution. The film shows a couple of reversible redox peaks superimposed on a large background of polypyrrole. The redox reaction is pH dependent. The film has good stability in air and can be cycled between -0.1 and 0.4 V (Ag/AgCl) for several hours without any significant changes in the voltammograms. UV-visible spectra indicate the incorporation of indigo-carmine into the polymer matrix.
Resumo:
A new method for electrochemically in situ conductivity measurements based on a reusable glassy carbon disc carbon fibre array double electrode is described. Using this technique and cyclic voltammetry, we have investigated the effects of the doping anion and solvent on the electrochemical properties of polypyrrole film. The electroactivity and potential dependent conductivity of polypyrrole film are strongly affected by solvent and the doping anion's solubility in the solvent, and also by the history of electrochemical treatments in different electrolyte solutions. It is very interesting that NO3-doped polypyrrole can completely keep its conducting state (doped state) at a reasonably negative potential (eg -0.8 V vs. sce) in acetonitrile solutions.
Resumo:
The electron transfer process of hemeproteins on the electrode surface is considered a promising subject in the area of bioelectrochemistry. Electrochemists believe that electron transfer between electroactive proteins and electrode surface might be expected to simulate the electron transfer between proteins. This research provides information about the electron transfer mechanism in biological system. Cytochrome c is a typical electron transferring protein,
Resumo:
Conducting polypyrrole is a biological compatible polymer matrix wherein number of drugs and enzymes can be incorporated by way of doping. The polypyrrole, which is obtained as freestanding film by electrochemical polymerization, has gained tremendous recognition as sophisticated electronic measuring device in the field of sensors and drug delivery. In drug delivery the reversing of the potential 100% of the drug can be released and is highly efficient as a biosensor in presence of an enzyme. In this review we discuss the applications of conducting polypyrrole as biosensor for some biomolecules and drug delivery systems.
Resumo:
Synthesis of free standing conducting polypyrrole film using room temperature melt as the electrolyte is reported. We also report variation in the contribution of ionic conductance with temperature of the polymer film by four probe method and electrochemical properties like diffusion coefficient and ionic mobility of AlCl-4 doped polypyrrole film. An attempt has been made to arrive at the stability of charge carrier concentration over a temperature range of 295 to 350 K under vacuum. The film was characterized by optical techniques and scanning electron micrography.