949 resultados para Polymeric sponges
Resumo:
The stress response, at the molecular level, of the soft corals Dendronephthya klunzingeri and Heteroxenia sp., hard corals Acropora hyacinthus and A. valenciennesi, an ascidian Symplegma sp. and sponges Latruncula cortica and Callyspongia crassa to germanium oxide (GeO sub(2)) was evaluated. Evaluation was carried out using bioindicators. such as the level of expression of each of the heat shock proteins (HSPs) and the silicatein enzyme in response to the compound. However, the expression was measured by SDS Polyacrylamide Gel Electrophoresis (SDS PAGE) and western blotting. The harmful concentration of GeO sub(2) that produced noticeable molecular changes in the studied samples during the first 6-24 hours was 6 μg/ml. The two studied soft corals as well as the ascidian responded to the harmful concentration of germanium oxide by expressing the heat-shock protein 90 (hsp90), while the two hard corals responded by expressing hsp70, C. crassa by decreasing the level of silicatein enzyme and sponge L. cortica produced no change by any of the used biomarkers, The soft coral Heteroxenia sp. was found to be sensitive to mechanical stress during the experiment and it was more sensitive to 6 μg/ml of GeO sub(2) than the other soft coral D. klunzingeri. The two studied hard corals were sensitive to mechanical stress during the experiment, but A. hyacinth us showed higher sensitivity than A. valenciennesi. However, these 2 corals displayed reverse response to GeO sub(2). Primitive evidences were found in the SDS PAGE to distinguish the tissue of the soft coral from that of the hard coral on the molecular level; the soft coral showed two prominent protein bands (45 and 50 kDa) while the two prominent protein bands for hard corals were 31 and 116 kDa.
Resumo:
A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-ofprinciple demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ -15 dB) and low crosstalk values (< -30 dB) are achieved for the fabricated samples while better than ± 6 μm -1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10-12 is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator. © 2012 Optical Society of America.
Resumo:
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-levelinterconnections is presented. Low-loss and low-crosstalk module performance is achieved, while-1 dB alignment tolerances better than ± 8 μm are demonstrated. © OSA 2012.
Resumo:
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.
Resumo:
We present the development of a drug-loaded triple-layer platform consisting of thin film biodegradable polymers, in a properly designed form for the desired gradual degradation. Poly(dl-lactide-co-glycolide) (PLGA (65:35), PLGA (75:25)) and polycaprolactone (PCL) were grown by spin coating technique, to synthesize the platforms with the order PCL/PLGA (75:25)/PLGA (65:35) that determine their degradation rates. The outer PLGA (65:35) layer was loaded with dipyridamole, an antiplatelet drug. Spectroscopic ellipsometry (SE) in the Vis-far UV range was used to determine the nanostructure, as well as the content of the incorporated drug in the as-grown platforms. In situ and real-time SE measurements were carried out using a liquid cell for the dynamic evaluation of the fibrinogen and albumin protein adsorption processes. Atomic force microscopy studies justified the SE results concerning the nanopores formation in the polymeric platforms, and the dominant adsorption mechanisms of the proteins, which were defined by the drug incorporation in the platforms. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
The bioactivity screening of fractions from two inter-tidal sponges collected from the north of China Yellow Sea and one sponge collected from the South Chinese Sea was reported in this study. In sponge Hymeniacidon perleve there were 9 fractions out of 15 from CHCl3 extract with anti Staphylococcus aureus activity, 9 fractions out of 19 from BuOH extract with anti Escherichia coli activity, and three fractions from CHCl3 extract which had moderate to strong activity in inhibiting Bacillus subtilis, Candida albicans, and Aspergilus niger. The fractions of Reniochalina sp. showed bioactivity against bacteria and fungi. The fractions of Acanthella acuta Schmidt showed bioactivity against S. aureus and fungi. One compound from H. perleve obtained by the bioactively directing isolation was tested for bioactivity against the human hepatoma cell line Qgy7701 (IC50 10.1 mug/ml), Burkitt's lymphoma cell line Raji (IC50 9.76 mug/ml) and chronic myelogenous leukemia K562 (IC50 1.90 mug/ml). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A new poly(fullerene oxide) thin film material has been fabricated by thermal activation and electron bombardment on hexanitro[60]fullerene (HNF) film deposited on a An substrate, all under vacuum conditions. The reaction products in the polymerization process are analyzed by XPS, UPS, IR, TGA-MS and LDI-MS techniques. It is found that the main effect of thermal and radiation treatments is to induce cleavage of -NO bonds from HNF molecules resulted in the release of nitric oxide gas and the formation of fullerene-bound oxyradicals, C-60-C-6. Spectroscopic evidence strongly suggests that rearrangement of fullerenic nitro moieties into nitrito groups is involved in the HNF decomposition process prior to the generation of reactive oxyradical intermediates. Consequently, the intermolecular coupling reaction of these oxyradicals leads to carbon polymer networks containing oxygen-bridged fullerenes. The thermally generated polymeric thin film is stable up to 900 K. Electron bombardment is also effective in both the decomposition of -NO2 groups and the removal of -OH groups present in HNF films. UV irradiation at 365 nm alone is shown to be not as efficient for the polymer formation. (C) 2003 Elsevier Ltd. All rights reserved.