953 resultados para Polygenic inheritance
Resumo:
Many bivalve species possess two distinct mtDNA lineages, called F and M, respectively inherited maternally and paternally: this system is called doubly uniparental inheritance (DUI). The main experimental project of my PhD was the quantification of the two mtDNAs during the development of the DUI species Ruditapes philippinarum, from early embryos to sub-adults, using Real-Time qPCR. I identified the time interval in which M mtDNA is lost from female individuals, while it is retained in males (which are heteroplasmic through all of their life cycle). The results also suggested absence of mtDNA replication during early embryogenesis, a process constituting a bottleneck that highly reduces the copy number of mtDNA molecules in cells of developing larvae. In males this bottleneck may produce cells homoplasmic for M mtDNA, and could be considered as a first step of the segregation of M in the male germ line. Another finding was the characterization, in young clams approaching the first reproductive season, of a significant boost in copy number of F mtDNA in females and of M in males. Given the age of animals in which this mtDNA-specific growth was observed, the finding could probably be the outcome of the first round of gonads and gametes production. Other lines of research included the characterization of the unassigned regions in mt genomes of DUI bivalves. These regions can harbor signals involved in the control of replication and/or transcription of the mtDNA molecule, as well as additional open reading frames (ORFs) not related to oxidative phosphorylation. These features in DUI species could be associated to the maintenance of separate inheritance routes for the two mtDNAs. Additional ORFs are also found in other animal mt genomes: I summarized the presence of gene duplications as a co-author in a review focusing on animal mt genomes with unusual gene content.
Resumo:
The prevalence of deafness is high in cat populations in which the dominant white gene is segregating. The objective of this study was to investigate whether there is a gene that is responsible for deafness as well as for blue eyes and to establish a plausible mode of inheritance. For this purpose, data from an experimental colony with deaf cats were analyzed. The hearing status was determined by acoustically evoked brain stem responses (BAER). Complex segregation analyses were conducted to find out the most probable mode of inheritance using maximum likelihood procedures. The prevalence of deafness and partial hearing in the experimental colony was 67% and 29%, respectively. The results of the bivariate segregation analysis support the hypothesis of a pleiotropic major gene segregating for deafness and blue iris colour. The high heritability coefficients for both traits, 0.55 and 0.75 respectively, indicate that beside the major gene there is an important influence of polygenic effects.
Resumo:
BACKGROUND: The Mannheimia subclades belong to the same bacterial genus, but have taken divergent paths toward their distinct lifestyles. For example, M. haemolytica + M. glucosida are potential pathogens of the respiratory tract in the mammalian suborder Ruminantia, whereas M. ruminalis, the supposed sister group, lives as a commensal in the ovine rumen. We have tested the hypothesis that vertical inheritance of the leukotoxin (lktCABD) operon has occurred from the last common ancestor of genus Mannheimia to any ancestor of the diverging subclades by exploring gene order data. RESULTS: We examined the gene order in the 5' flanking region of the leukotoxin operon and found that the 5' flanking gene strings, hslVU-lapB-artJ-lktC and xylAB-lktC, are peculiar to M. haemolytica + M. glucosida and M. granulomatis, respectively, whereas the gene string hslVU-lapB-lktC is present in M. ruminalis, the supposed sister group of M. haemolytica + M. glucosida, and in the most ancient subclade M. varigena. In M. granulomatis, we found remnants of the gene string hslVU-lapB-lktC in the xylB-lktC intergenic region. CONCLUSION: These observations indicate that the gene string hslVU-lapB-lktC is more ancient than the hslVU-lapB-artJ-lktC and xylAB-lktC gene strings. The presence of (remnants of) the ancient gene string hslVU-lapB-lktC among any subclades within genus Mannheimia supports that it has been vertically inherited from the last common ancestor of genus Mannheimia to any ancestor of the diverging subclades, thus reaffirming the hypothesis of vertical inheritance of the leukotoxin operon. The presence of individual 5' flanking regions in M. haemolytica + M. glucosida and M. granulomatis reflects later genome rearrangements within each subclade. The evolution of the novel 5' flanking region in M. haemolytica + M. glucosida resulted in transcriptional coupling between the divergently arranged artJ and lkt promoters. We propose that the chimeric promoter have led to high level expression of the leukotoxin operon which could explain the increased potential of certain M. haemolytica + M. glucosida strains to cause a particular type of infection.
Resumo:
Context and Objective: Most cases of goitrous congenital hypothyroidism (CH) from thyroid dyshormonogenesis 1) follow a recessive mode of inheritance and 2) are due to mutations in the thyroid peroxidase gene (TPO). We report the genetic mechanism underlying the apparently dominant inheritance of goitrous CH in a nonconsanguineous family of French Canadian origin. Design, Setting, and Participants: Two brothers identified by newborn TSH screening had severe hypothyroidism and a goiter with increased (99m)Tc uptake. The mother was euthyroid, but the father and two paternal uncles had also been diagnosed with goitrous CH. After having excluded PAX8 gene mutations, we hypothesized that the underlying defect could be TPO mutations. Results: Both compound heterozygous siblings had inherited a mutant TPO allele carried by their mother (c.1496delC; p.Pro499Argfs2X), and from their father, one brother had inherited a missense mutation (c.1978C-->G; p.Gln660Glu) and the other an insertion (c.1955insT; p.Phe653Valfs15X). The thyroid gland of one uncle who is a compound heterozygote for TPO mutations (p.Phe653Valfs15X/p.Gln660Glu) was removed because of concurrent multiple endocrine neoplasia type 2A. Immunohistochemistry revealed normal TPO staining, implying that Gln660Glu TPO is expressed properly. Modeling of this mutant in silico suggests that its three-dimensional structure is conserved, whereas the electrostatic binding energy between the Gln660Glu TPO and its heme group becomes repulsive. Conclusion: We report a pedigree presenting with pseudodominant goitrous CH due to segregation of three different TPO mutations. Although goitrous CH generally follows a recessive mode of inheritance, the high frequency of TPO mutations carriers may lead to pseudodominant inheritance.
Resumo:
Nephronophthisis is a recessive cystic renal disease that leads to end-stage renal failure in the first two decades of life. Twenty-five percent of nephronophthisis cases are caused by large homozygous deletions of NPHP1, but six genes responsible for nephronophthisis have been identified. Because oligogenic inheritance has been described for the related Bardet-Biedl syndrome, we evaluated whether mutations in more than one gene may also be detected in cases of nephronophthisis. Because the nephrocystins 1 to 4 are known to interact, we examined patients with nephronophthisis from 94 different families and sequenced all exons of the NPHP1, NPHP2, NPHP3, and NPHP4 genes. In our previous studies involving 44 families, we detected two mutations in one of the NPHP1-4 genes. Here, we detected in six families two mutations in either NPHP1, NPHP3, or NPHP4, and identified a third mutation in one of the other NPHP genes. Furthermore, we found possible digenic disease by detecting one individual who carried one mutation in NPHP2 and a second mutation in NPHP3. Finally, we detected the presence of a single mutation in nine families, suggesting that the second recessive mutation may be in another as yet unidentified NPHP gene. Our findings suggest that oligogenicity may occur in cases of nephronophthisis.
Resumo:
This contribution addresses the substantial tax privilege for businesses introduced by the German Inheritance Tax Act 2009. Advocates of the vast or even entire tax exemption for businesses stress the potential damage of the inheritance tax on businesses, as those often lack liquidity to meet tax liability. This submission tackles this issue empirically based on data of the German Inheritance Tax Statistics and the SOEP. The results indicate that former German inheritance tax law has not endangered transferred businesses. Hence, there is no need for the tremendous tax privilege for businesses in current German inheritance tax law. An alternative flat inheritance tax without tax privileges, which meets revenue neutrality per tax class according to current tax law, provokes in some cases relative high tax loads which might trouble businesses.
Resumo:
BACKGROUND: Mode of inheritance of equine recurrent airway obstruction (RAO) is unknown. HYPOTHESIS: Major genes are responsible for RAO. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (n = 197; n = 163) and a representative sample of Swiss Warmbloods (n = 401). METHODS: One environmental and 4 genetic models (general, mixed inheritance, major gene, and polygene) were tested for Horse Owner Assessed Respiratory Signs Index (1-4, unaffected to severely affected) by segregation analyses of the 2 half-sib sire families, both combined and separately, using prevalences estimated in a representative sample. RESULTS: In all data sets the mixed inheritance model was most likely to explain the pattern of inheritance. In all 3 datasets the mixed inheritance model did not differ significantly from the general model (P= .62, P= 1.00, and P= .27) but was always better than the major gene model (P < .01) and the polygene model (P < .01). The frequency of the deleterious allele differed considerably between the 2 sire families (P= .23 and P= .06). In both sire families the displacement was large (t= 17.52 and t= 12.24) and the heritability extremely large (h(2)= 1). CONCLUSIONS AND CLINICAL RELEVANCE: Segregation analyses clearly reveal the presence of a major gene playing a role in RAO. In 1 family, the mode of inheritance was autosomal dominant, whereas in the other family it was autosomal recessive. Although the expression of RAO is influenced by exposure to hay, these findings suggest a strong, complex genetic background for RAO.
Resumo:
To test the hypothesis of a heritable base of ectopic ureters (EU) in Entlebucher Mountain Dogs (EMD) and to elucidate associated risk factors and mode of inheritance of the disease, 565 EMD were clinically investigated and population genetic analyses performed. Based on the location of the most caudal termination of the ureteral openings, 552 EMD were classified into three phenotype groups trigone, intravesically and extravesically ectopic based on results of abdominal sonography, urethra-cystoscopy and/or contrast-enhanced computed tomography. One-third (32.9%) of the phenotyped animals had normal terminations of both ureters in the bladder trigone, 47.3% had at least one intravesicular ectopic termination and 19.8% had at least one extravesicular ectopic termination. Multivariate mixed logistic regression revealed gender as a risk factor associated with EU as males were more often affected than females. Complex segregation analysis indicated a hereditary basis for EU in EMD and the involvement of a major gene in the occurrence of the extravesicular EU phenotype.
Resumo:
In species with indeterminate growth, age-related size variation of reproductive competitors within each sex is often high. This selects for divergence in reproductive tactics of same-sex competitors, particularly in males. Where alternative tactics are fixed for life, the causality of tactic choice is often unclear. In the African cichlid Lamprologus callipterus, large nest males collect and present empty snail shells to females that use these shells for egg deposition and brood care. Small dwarf males attempt to fertilize eggs by entering shells in which females are spawning. The bourgeois nest males exceed parasitic dwarf males in size by nearly two orders of magnitude, which is likely to result from greatly diverging growth patterns. Here, we ask whether growth patterns are heritable in this species, or whether and to which extent they are determined by environmental factors. Standardized breeding experiments using unrelated offspring and maternal half-sibs revealed highly divergent growth patterns of male young sired by nest or dwarf males, whereas the growth of female offspring of both male types did not differ. As expected, food had a significant modifying effect on growth, but neither the quantity of breeding substrate in the environment nor ambient temperature affected growth. None of the environmental factors tested influenced the choice of male life histories. We conclude that in L. callipterus growth rates of bourgeois and parasitic males are paternally inherited, and that male and female growth is phenotypically plastic to only a small degree.
Resumo:
Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.
Resumo:
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Resumo:
Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4adRFA); D2 (F4abR-/F4acR-/F4adRPA); E (F4abR-/F4acR-/F4adR-).