189 resultados para Poison
Resumo:
This work demonstrates the condition optimization during liquid phase deposition (LPD) Of SiO2/GaAs films. LPD method is further applied to form Al2O3 films on semiconductors with poison-free materials. Proceeding at room temperature with inexpensive equipment, LPD of silica and alumina films is potentially serviceable in microelectronics and related spheres.
Resumo:
何首乌为常用中药,由何首乌及含何首乌的中成药制剂所引起的不良反应也时见报道,科学阐明不良反应的物质基础并提出解决方案对何首乌的使用十分重要。本论文研究了何首乌炮制前后KM小鼠肝脏毒性基因表达谱、生物活性及化学成分的变化。所获结果支持何首乌炮制的目的是减毒、改性(改变药效),何首乌生、熟异治的观点。制首乌对抑郁症的效果显著优于生首乌,这与本草所记载的何首乌炮制后补肝肾、益精血,归肝、肾经一致。 主要结果如下: 1、 生、制首乌的毒理基因芯片研究结果 何首乌的不良反应主要表现在肝损害方面。本研究建立了生何首乌和制何首乌不同剂量的肝毒性作用模型,体重指标统计发现生何首乌各剂量组平均体重显著下降,中剂量组(10 g/kg.d)体重下降20 %,高剂量组(20 g/kg.d)体重下降42%,50%动物死亡,提示动物机体能量代谢障碍;基因芯片研究结果表明何首乌是CYP450的抑制剂,生何首乌相对于制何首乌CYP3A4、CYP4A5显著下调,导致毒性成分在体内的吸收增加,服用大剂量的生何首乌后产生明显的肝毒性;主要对以下六条Pathway产生影响:①PPAR signaling pathway,主要毒性靶基因有RXRB CYP7a1、Acadl、Apoa2、Cyp4a、 FABP2 、MAPKKK5等基因。②Calcium signaling pathway,主要毒性靶基因有CAMK2B、CACNA1F、S100A1、 F2R、Ryr1、Slc8a2、Camk4 ③Neuroactive ligand-receptor interaction,主要毒性靶基因有Chrm4、 Ntsr2 、 GABRR1、 GRIK3、F2R等基因。④Wnt signaling pathway,主要毒性靶基因有Daam2、Rac1 等基因。⑤Complement and coagulation cascades,主要毒性靶基因有F2R、Serpina1b、Cfi 、FGA等基因。⑥Oxidative hosphorylation,主要毒性靶基因有Atp5e、NDUFA1等基因。生何首乌毒性明显强于制首乌,且生何首乌水煎液的毒性大于生何乌首丙酮提取物的毒性,这一结果表明,何首乌主要的毒性成分很可能并不仅仅是传统所认为的以大黄素为代表的蒽醌类化合物,而是何首乌中大量存在的有效组分二苯乙烯苷与大黄素相互作用的结果,这一研究结果与前述的何首乌对肝药酶的影响是一致的。后续生、制首乌的化学成分差异研究表明,炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 2 生、制首乌药效差异研究结果 本文采用慢性中等强度不可预知应激刺激模型(chronic unpredictable mild stress, CUMS)和动物行为绝望实验法,研究生、制首乌抗抑郁活性的差异,制首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),生首乌制首乌(5g/kg.d)与模型组相比无显著差异,这一结果表明制首乌抗抑郁活性显著优于生首乌。 本文比较了生、制首乌对四氧嘧啶糖尿病模型小鼠血糖的影响的差异,生首乌(5 g/kg.d)与模型组相比有显著差异(P< 0.01),制首乌(5 g/kg.d)与模型组相比无显著差异,这一结果表明生首乌降糖活性优于制首乌。这一结果与历代中医古书中生首乌治疗消渴症(糖尿病)的记载一致。 3生、制首乌化学成分差异的研究结果 本文选用HPLC-DAD指纹图谱技术结合药效成分含量测定来研究生、制首乌化学成分的差异。炮制后,何首乌中的主要化学成分并未消失,只是其含量发生了改变。炮制后二苯乙烯苷含量明显降低:生首乌为5.512 %、清蒸制首乌为3.811 %、豆制首乌为3.538 %,大黄素的含量炮制后显著升高,生首乌为0.094 %、清蒸制首乌为0.119 %、豆制首乌为0.126 %。 综上所述,炮制前后何首乌中二苯乙烯苷和大黄素含量比的变化可能是何首乌炮制减毒、改性的物质基础。 根据上述结果我们建立了生、制首乌的质量控制新模式。 In recent years, some adverse drug reactions (ADR) about some traditional Chinese medicine were reported at times. As a Chinese medicine most in use, the ADRs of Radix Polygoni multiflori (RPM) and the medicines containing the RPM were also mentioned. The resolution of the problems caused by the ADRs is very important for the use of the RPM as a medicine. The process (or preparation) is a significant feature for the clinical use of the Chinese medicine and an important technology for the safe use and good effect of the Chinese medicine. By processing, the toxicity of the Chinese medicine can be reduced, its properties can be changed and curative effect can be enhanced at the same time. The changes of the gene expression profiles for KM mice hepatotoxic effects, and the change of the biological activity and the chemical composition after being processed of the RPm were studied in the present dissertation. The RPm heatotoxicity mechanism and the toxicity target genes were explained on the gene level for the first time. With the antidepressant activity, and the hypoglycemic effect as the target, the differences on the pharmacodynamics between the processed RPm and unprocessed RPm, for the first time, were investigated. The results obtained show that the antidepressant activity of the processed RPM is far higher than the ones of unprocessed RPm. As we know, the results were reported for the first time. The quality control systems (QCS) for the processed and the unprocessed RPm were founded. The HPLC-DAD was used in the systems founded on the basis of the toxicology and the pharmacodynamics experiments. As we know, the OCSs were reported for the first time. The above-mentioned experimental results confirm that the unique process theory of the traditional Chinese medicine (TCM) used for the process of the Radix Polygoni multiflori (RPm) is correct, i.e after being processed the toxicity of the RPm decreases and its Pharmacodynamic effects change. It is known to author that there have been no similar reports in the literatures up to now. The main experimental results are summarized as follows: 1 The results on the mice toxicology gene chip for the unprocessed and processed RPm The KM mice hepatotoxic model caused by the RPm at the different dosages was established in the present study. The results obtained show that the mouse average body weight obviously decreased in the groups at the different dosages of the unprocessed RPm: the 10 g/kg.d .group decreased 20%; 20 g/kg.d. group decreased 42%, and 50% mice died at 20 g/kg.d. group. The main experimental results on the mice toxicology gene chip The RPm is the CYP450 inhibitor. As compared with the processd RPm, the CYP3A4, CYP4A5 of the unprocessed RPm demonstrate the marked downregulation, which leads to the increase of the poison absorbtion into the body with the result that the unprocessed RPm yields the marked hepatotoxication. The hepatotoxication was produced because the following 6 pathways were affected: ①PPAR signaling pathway, the chief toxicity target genes are RXRB, CYP7a1, Acadl, Apoa2, Cyp4a, FABP2 and MAPKKK5 etc. ②Calcium signaling pathway, the chief toxicity target genes are CAMK2B, CACNA1F, S100A1, F2R, Ryr1,Slc8a2 and Camk4 etc. ③Neuroactive ligand-receptor interaction, the chief toxicity target genes are Chrm4, Ntsr2, GABRR1, GRIK3 and F2R etc. ④Wnt signaling pathway, the chief toxicity target genes are Daam2, Rac1 etc. ⑤Complement and coagulation cascades, the chief toxicity target genes are F2R, Serpina1b, Cfi and FGA etc. ⑥Oxidative phosphorylation, the chief toxicity target genes are Atp5e, NDUFA1 etc. The above experimental results, for the first time , demonstrate on the gene level that the unprocessed Rpm toxicity is far stronger than the processed RPm one, and the toxicity of the water decoction of the unprocessed RPm is greater than the one of its acetone extracts, which shows that the chief toxicity components of the RPm are probably not only the anthraquinones, for example, the emodin, but the complex compounds produced by the interaction between the emondin and the stilbene glucoside which is the largest component of the unprocessed RPm. The result is accordance with the above effect of the RPm on the hepatic drugenzyme. Aftter being processed, in fact, the content of the stibene glucoside in the RPm markedly decreases. 2. The results on the pharmacodynamic differences between the unprocessed and processed RPm The results obtained show that the effects of processing on RPm pharmacodynamic behaviour received in the Chinese Material Medica are correct. It is known to author that this is the first experimental result in the research materials now available. The chief results are as follows: For the treatment of the antidepressant, the curative effect of the processed RPm is far better than the one of the unprocessed RPm. By contrast with the above results, the hypoblycemic effect of the unprocessed RPm is better than the one of the processed RPm. 3. The results on the Chemical Composition The results obtained by using HPLC-DAD fingerprint and by the determination of effective component content show that the main chemical components in the RPm after being processed do not disappear, but their contents change. The contents of the stilbene glucoside (SG) and emodin in the different samples were determined as follows: SG contents 5.512 % for the unprocessed RPm 3.811 % for the processed RPm (Steamed) 3.588 % for the processed RPm (black soybean) Emodin contents 0.094 % for the unprocessed RPm 0.119 % for the processed RPm (Steamed) 0.126 % for the processed RPm (black soybean) The combination of above experimental results on the toxicity, the pharmacodynamics and the chemical composition indicates that the changes of the content ratio of SG/emodin may be the substance base of the toxicity decrease and pharmacodynamic changes of the RPM by the processing.
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.
Resumo:
主要从家畜营养、生态角度出发 ,围绕如何提高饲料利用率问题 ,重点讲述了饲料生产和家畜饲养两个环节中应注意的问题 ,包括 :饲料营养中负组合效应的消除 ,毒物和抗营养因子的消除 ;鉴于草食动物的特殊性 ,饲养中就如何控制瘤胃发酵阐述了改变饲养程序、水平和日粮成分 ,用活性剂补充日粮 ,非蛋白氮的有效利用和过瘤胃技术 ;最后是如何减轻家畜冷热应激等。
Resumo:
The influence of montmorillonite (MMT) on the syndiotactic polymerization behavior of styrene was studied. To avoid the hydrophilic surface of the MMT coming into contact with the catalyst, which could poison it, SAN was introduced between the MMT and Cp*Ti (OCH3)(3). MMT was introduced into the catalytic system as a supporter for the Ti catalyst (supported catalytic system) or just dispersed in the polymerization solvent directly (in situ polymerization system). The polymerization results showed that surface modification of MMT dramatically affected the catalytic activity as well as the syndiotacticity of the polymers. This is mainly explained by the insulator SAN preventing the formation of the inactive/little active species Si-O-Ti and other atactic active species resulting from the reaction of the -OH on the MMT layer surface with Cp*Ti(OCH3)(3).
Resumo:
Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.
Resumo:
织纹螺(Nassarius spp.)味道鲜美,是中国及其它一些亚洲国家沿海地区居民习惯食用的一种水产品。但是,近几十年来,中国沿海频繁发生食用织纹螺中毒事件,严重威胁着人们的身体健康和生命安全。加之人们对织纹螺体内的毒素成分、来源及其毒性变化规律还没有清晰的认识,因此难以有效预防和控制食用织纹螺引起的中毒事件。本文根据文献报道,在中国沿海食用织纹螺中毒事件多发的典型区域,包括江苏省的连云港市和盐城市、浙江省的舟山市和宁波市、福建省的宁德市、厦门市和莆田市设立了监测点,于2006年和2007年间进行了连续采样,应用小鼠生物测试法调查了织纹螺毒性的消长情况,并利用高效液相色谱-质谱联用(Liquid Chromatography-Mass Spectrometry,LC-MS)和高效液相色谱技术(High Performance Liquid Chromatography,HPLC)对织纹螺体内的毒素成分进行了分析。 实验结果表明,2006年于江苏省盐城市射阳海域采集的织纹螺样品中,阳性样品检出率为56%,毒性在2-5 MU/g组织(湿重)之间变化,在2007年于同地采集的8个样品中,除一个样品毒性为3.14 MU/g组织(湿重)以外,其余样品均表现为阴性;而2007年采集自连云港市赣榆海域的织纹螺样品,在采样期间则呈现出极高的毒性,最高达到846.52 MU/g 组织(湿重),毒性在监测期间呈“M”状波动,在5月和7月下旬出现两个毒性高峰。2006年于浙江省宁波市象山港采集的织纹螺样品中,阳性样品检出率为25%,毒性均在2.5 MU/g组织(湿重)左右;而同年采集自舟山市定海的织纹螺样品中,阳性样品检出率为100%,最高毒性达18.40 MU/g组织(湿重),毒性在监测期间也呈“M”状波动,高峰期出现在6月初和7月底。2006年3-9月采集自福建省宁德霞浦、厦门同安和莆田涵江采集的织纹螺样品中,阳性样品检出率分别为20%、43%和14%,除7月中旬采集自宁德霞浦的一个样品毒性达到16.19 MU/g组织(湿重)之外,其余样品毒性均在2-5 MU/g组织(湿重)间波动。从阳性样品的时间分布规律来看,3月份和6、7月份是阳性样品集中出现的时期。根据以上调查结果可以看出,织纹螺的毒性消长呈现出较明显的地域性和季节性特征,不同地区的织纹螺毒性存在差异,而同一区域织纹螺毒性的消长则表现出明显的季节性集中趋势。除了2007年采集自连云港赣榆的织纹螺样品毒性与其平均个体组织重量有相似的变化趋势以外,其余地区的织纹螺样品毒性和个体大小无明显相关性。 利用LC-MS和HPLC技术对织纹螺样品中的毒素成分进行了分析,确定河豚毒素(tetrodotoxin, TTX)及其同系物(trideoxyTTX,4-epi-TTX,anhydroTTX,oxoTTX)是所采集织纹螺中的主要致毒成分,样品中没有检测到麻痹性贝毒毒素(Paralytic Shellfish Poison, PSP)。自不同地区采集的织纹螺中毒素成分基本一致,但组成存在一定差异。其中,采自江苏省连云港赣榆和浙江省舟山定海的织纹螺样品中,trideoxyTTX是主要的成分,其次是TTX;而从其它采样地点采集的织纹螺中,TTX都是主要的毒素成分,其次才是trideoxyTTX及其它同系物。对采集自江苏省连云港赣榆和浙江舟山定海的织纹螺体内毒素的解剖学分布进行了分析,结果表明肌肉、消化腺和剩余部分中的毒素组成基本一致,其中trideoxyTTX是主要的毒素成分,其次为TTX,但采自浙江舟山的织纹螺剩余部分中的TTX是主要的毒素成分。在监测期间,各组织中的毒素组成没有明显变化,但毒素含量随季节变化表现出了一定的差异。 综上所述,在中国沿海典型区域开展的织纹螺毒性调查结果表明其毒性消长具有一定的地域性和季节性特征。分析结果显示织纹螺体内的毒素成分是河豚毒素及其同系物,采自不同区域的织纹螺体内毒素成分基本一致,但毒素组成稍有差异。对织纹螺中毒素的解剖学分布研究显示,各组织中的毒素含量随季节变化而表现出一定差异,但毒素组成没有明显的季节性变化。这些结果显示中国沿海的织纹螺应具有相似的毒素来源,研究结果将为相关部门有效监测、预防和控制食用织纹螺中毒事件提供有力的科学依据。
Resumo:
The effect of S-10, a strain of marine bacteria isolated from sediment in the Western Xiamen Sea, on the growth and paralytic shellfish poison (PSP) production in the alga Alexandrium tamarense (A. tamarense) was studied under controlled experimental conditions. The results of these experiments have shown that the growth of A. tamarense is obviously inhibited by S-10 at high concentrations, however no evident effect on its growth was observed at low concentrations. Its PSP production was also inhibited by S 10 at different concentrations, especially at low concentrations. The toxicity of this strain of A. tamarense is about (0.9512.14) x 10(-6) MU/cell, a peak toxicity value of 12.14 x 10(-6) MU/cell appeared on the 14th day, after which levels decreased gradually. The alga grew well in conditions of pH 6-8 and salinities of 20-34 parts per thousand. The toxicity of the alga varied markedly at different pH and salinity levels. Toxicity decreased as pH increased, while it increased with salinity and reached a peak value at a salinity of 30 parts per thousand, after which it declined gradually. S-10 at a concentration of 1.02 x 10(9) cells/ml inhibited growth and the PSP production of A. tamarense at different pH and salinity levels. S-10 had the strongest inhibitory function on the growth of A. tamarense under conditions of pH 7 and a salinity of 34 parts per thousand. The best inhibitory effect on PSP production by A. tamarense was at pH 7, this inhibitory effect on PSP production did not relate to salinity. Interactions between marine bacteria and A. tamarense were also investigated using the flow cytometer technique (FCM) as well as direct microscope counting. S-10 was identitied as being a member of the genus Bacillus, the difference in 16S rDNA between S-10 and Bacillus halmapalus was only 2%. The mechanism involved in the inhibition of growth and PSP production of A. tamarense by this strain of marine bacteria, and the prospect of using it and other marine bacteria in the biocontrol of red-tides was discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fuel of proton exchange membrane fuel cells (PEMFC) mostly comes from reformate containing CO. which will poison the fuel cell electrocatalyst. The effect of CO on the performance of PEMFC is studied in this paper. Several electrode structures are investigated for CO containing fuel. The experimental results show that thin-film catalyst electrode has higher specific catalyst activity and traditional electrode structure can stand for CO poisoning to some extent. A composite electrode structure is proposed for improving CO tolerance of PEMFCs. With the same catalyst loading. the new composite electrode has improved cell performance than traditional electrode with PtRu/C electrocatalyst for both pure hydrogen and CO/H-2. The EDX test of composite anode is also performed in this paper, the effective catalyst distribution is found in the composite anode. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Sulfur is a major poison to noble metal catalysts for deep aromatic hydrogenation in the petroleum refining industry. In order to study the sulfur resistance of Pd-based catalysts, a series of Pd, Cr, and PdCr catalysts supported on HY-Al2O3 were studied by NH3-TPD, pyridine-adsorption IR, TPR, IR spectra of adsorbed CO, and toluene hydrogenation in the presence of 3000 ppm sulfur as thiophene under the following conditions: 533-573 K, 4.2 MPa, and WHSV 4.0 h(-1). Cr has no influence on the acidity of the catalysts. TPR patterns and in situ IR spectra of adsorbed CO revealed a strong interaction between Cr and Pd, and the frequency shift of linear bonded CO on Pd indicates that the electron density of Pd decreases with the increase of the Cr/Pd atomic ratio. The catalytic performance of Pd, Cr, and PdCr catalysts shows that the sulfur resistance of Pd is strongly enhanced by Cr, and the activity reaches its maximum when the Cr/Pd atomic ratio equals 8. The active phase model "Pd particles decorated by Cr2O3" is postulated to explain the behavior of PdCr catalysts. (C) 2001 Academic Press.
Resumo:
Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.
To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.
I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.
Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.
Resumo:
Antimony,symbol Sb,one of the earliest elements to be recognised, demonstrates that there is much intriguing chemistry to be found in the nether regions of the Periodic Table. Ametalloid with a strong affinity for sulfur, antimony is pharmacologically active and hasbeen used in medicines, but is also a poison.
Resumo:
Evidence is accumulating to suggest that some of the diverse functions associated with BRCA1 may relate to its ability to transcriptionally regulate key downstream target genes. Here, we identify S100A7 (psoriasin), S100A8, and S100A9, members of the S100A family of calcium-binding proteins, as novel BRCA1-repressed targets. We show that functional BRCA1 is required for repression of these family members and that a BRCA1 disease–associated mutation abrogates BRCA1-mediated repression of psoriasin. Furthermore, we show that BRCA1 and c-Myc form a complex on the psoriasin promoter and that BRCA1-mediated repression of psoriasin is dependent on functional c-Myc. Finally, we show that psoriasin expression is induced by the topoisomerase IIA poison, etoposide, in the absence of functional BRCA1 and increased psoriasin expression enhances cellular sensitivity to this chemotherapeutic agent. Therefore, we identified a novel transcriptional mechanism that is likely to contribute to BRCA1-mediated resistance to etoposide.
Resumo:
Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H2S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H2S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H2S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed. (C) 2005 American Institute of Physics.
Resumo:
Okadaic acid, a diarrhetic shellfish poison, domoic acid, an amnesic shellfish poison, and saxitoxin, a paralytic shellfish poison, are three of the best-known marine biotoxins. The mouse bioassay is the method most widely used to detect many of these toxins in shellfish samples, but animal welfare concerns have prompted researchers to seek alternative methods of detection. In this study, three direct competitive enzyme-linked immunosorbent assays (ELISAs), each based on antibodies raised in rabbits against a conjugate of the analyte of interest, were developed for marine biotoxin detection in mussel, oyster, and scallop. One assay was for okadaic acid, one for saxitoxin, and one for domoic acid usually detected and quantified by high-performance liquid chromatography-ultraviolet light (HPLC-UV). All three compounds and a number of related toxins were extracted quickly and simply from the shellfish matrices with a 9 : 1 mixture of ethanol and water before analysis. The detection capabilities (CC values) of the developed ELISAs were 150 mu g kg-1 for okadaic acid, 50 mu g kg-1 for domoic acid, and 5 mu g kg-1 or less for saxitoxin. The assays proved satisfactory when used over a 4-month period for the analysis of 110 real samples collected in Belgium.