186 resultados para Poincare compactification
Resumo:
A detailed examination of the Killing equations in Robertson-Walker coordinates shows how the addition of matter and/or radiation to a de Sitter Universe breaks the symmetry generated by four of its Killing fields. The product U = a(2) H of the squared scale parameter by the time-derivative of the Hubble function encapsulates the relationship between the two cases: the symmetry is maximal when U is a constant, and reduces to the six-parameter symmetry of a generic Friedmann-Robertson-Walker model when it is not. As the fields physical interpretation is not clear in these coordinates, comparison is made with the Killing fields in static coordinates, whose interpretation is made clearer by their direct relationship to the Poincare group generators via Wigner-Inonu contractions.
Resumo:
After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincare covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS(5) x S-5 is explicitly constructed.
Resumo:
Using an infinite number of fields, we construct actions for D = 4 self-dual Yang-Mills with manifest Lorentz invariance and for D = 10 super-Yang-Mills with manifest super-Poincare invariance. These actions are generalizations of the covariant action for the D = 2 chiral boson which was first studied by McClain, Wu, Yu and Wotzasek.
Resumo:
The role played by torsion in gravitation is critically reviewed. After a description of the problems and controversies involving the physics of torsion, a comprehensive presentation of the teleparallel equivalent of general relativity is made. According to this theory, curvature and torsion are alternative ways of describing the gravitational field, and consequently related to the same degrees of freedom of gravity. However, more general gravity theories, like for example Einstein-Cartan and gauge theories for the Poincare and the affine groups, consider curvature and torsion as representing independent degrees of freedom. By using an active version of the strong equivalence principle, a possible solution to this conceptual question is reviewed. This solution ultimately favors the teleparallel point of view, and consequently the completeness of general relativity. A discussion of the consequences for gravitation is presented.
Resumo:
We apply the Gauss-Codazzi formalism to brane-worlds within the framework of Brans-Dicke gravity. The compactification is taken from six to five dimensions in order to formalize brane-world models with hybrid compactification in scalar tensor theories.
Resumo:
In this Letter we study the process of gluon fusion into a pair of Higgs bosons in a model with one universal extra dimension. We find that the contributions from the extra top quark Kaluza-Klem excitations lead to a Higgs pair production cross section at the LHC that can be significantly altered compared to the Standard Model value for small values of the compactification scale. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincare algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, the occurrence of chaos (homoclinic scene) is verified in a robotic system with two degrees of freedom by using Poincare-Mel'nikov method. The studied problem was based on experimental results of a two-joint planar manipulator-first joint actuated and the second joint free-that resides in a horizontal plane. This is the simplest model of nonholonomic free-joint manipulators. The purpose of the present study is to verify analytically those results and to suggest a control strategy.
Resumo:
In this paper we consider a self-excited mechanical system by dry friction in order to study the bifurcational behavior of the arisen vibrations. The oscillating system consists of a mass block-belt-system which is self-excited by static and Coulomb friction. We analyze the system behavior numerically through bifurcation diagrams, phase portraits, frequency spectra and Poincare maps, which show the existence of nonhomoclinic and homoclinic chaos and a route to homoclinic chaos. The homoclinic chaos is also analyzed analytically via the Melnikov prediction method. The system dynamic is characterized by the existence of two potential wells in the phase plane which exhibit rich bifurcational and chaotic behavior.