95 resultados para Plutonium.
Resumo:
Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings. ^
Resumo:
During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.
Resumo:
The Kara Sea is an area uniquely suitable for studying processes in the river-sea system. This is a shallow sea, into which two great Siberian rivers, Yenisei and Ob, flow. From 1995 to 2003, the sea was studied by six international expeditions onboard the R/V Akademik Boris Petrov. This publication summarizes the results obtained, within the framework of this project, at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Various hydrogeochemical parameters, concentrations and isotopic composition of organic and carbonate carbon of the sediments, plankton, particulate organic matter, hydrocarbons, and dissolved CO2 were examined throughout the whole sea area at more than 200 sites. The d13C varies from -22 and -24 per mil where Atlantic waters enter the Kara Sea and in the north-eastern part of the water area to -27 per mil in the Yenisei and Ob estuaries. The value of d13C of the plankton is only weakly correlated with the d13C of the organic matter from the sediments and is lower by as much as 3-4 per mil. The paper presents the results obtained from a number of meridional river-sea profiles. It was determined from the relations between the isotopic compositions of plankton and particulate matter that the river waters carry material consisting of 70% detrital-humus matter and 30% planktonogenic material in the river part, and the material contained in the offshore waters consists of 30% terrigenous components, with the contribution of bioproducers amounting to 70%. The carbon isotopic composition of the plankton ranges from -29 to -35 per mil in the riverine part, from -28 to -27 per mil in the estuaries, and from -27.0 to -25 per mil in the marine part. The relative lightness of the carbon isotopic composition of plankton in Arctic waters is explained by the temperature effect, elevated CO2 concentrations, and long-distance CO2 supply to the sea with river waters. The data obtained on the isotopic composition of CO2 in the surface waters of the Kara Sea were used to map the distribution of d13C. The complex of hydrocarbon gases extracted from the waters included methane, C2-C5, and unsaturated C2=-C4= hydrocarbons, for which variations in the concentrations in the waters were studied along river-estuary-sea profiles. The geochemistry of hydrocarbon gases in surface fresh waters is characterized by comparable concentrations of methane (0.3-5 µl/l) and heavier hydrocarbons, including unsaturated ones. Microbiological methane with d13C from -105 to -90 per mil first occurs in the sediments at depths of 40-200 cm. The sediments practically everywhere display traces of methane oxidation in the form of a shift of the d13C of methane toward higher values and the occurrence of autogenic carbonate material, including ikaite, enriched in the light isotope. Ikaite (d13C from -25 to -60 per mil) was found and examined in several profiles. The redox conditions in the sediments varied from normal in the southern part of the sea to highly oxidized along the Novaya Zemlya Trough. Vertical sections through the sediments of the latter exemplify the complete suppression of the biochemical activity of microorganisms. Our data provide insight into the biogeochemistry of the Kara Sea and make it possible to specify the background values needed for ecological control during the future exploration operations and extraction of hydrocarbons in the Kara Sea.
Resumo:
In this report, the results of a 2000-2001 radiogeoecological investigation are presented for the region of the Ob and Yenisei estuaries and the adjacent Kara Sea. In order to study the behaviour and migration of Cs, Sr and Pu radionuclides in a river - sea system experimental research on the distribution of these radionuclides in the water column and surface sediments has been carried out. In addition, the role of suspended and dissolved organic matter on the behaviour of radionuclides in water solutions has been studied. The 137Cs and 239,240Pu concentrations in the upper 0-2cm layer of the sediments varied between 1,4 and 50,0 Bq/kg, with a mean of 12,4 Bq/kg, and between 0,065-1,96 Bq/kg, with a mean of 0,62 Bq/kg, respectively. There is a direct relationship of a specific radioactivity of 137Cs and 239,240Pu in the sediments and the content of clay fraction. The 137Cs, 90Sr and 239,240Pu concentrations in the water samples varied between 0,4 and 7,0 Bq/m**3 (mean of 3,6 Bq/m**3), 0,4 and 9,7 Bq/m**3 (mean of 3,3 Bq/m**3), and 0,01-0,3 Bq/m**3 (mean of 0,02 Bq/m**3), respectively. In the water samples the concentration of the water-soluble species l37Cs increases with increasing salinity, whereas the concentration of the 90Sr-radionuclide decreases with increasing salinity. This may be related to the physico-chemical behaviour of these radionuclides in water solutions and the influence of several sources on radioactive pollution in this basin. In sea water the suspended matter may absorb up to 10% 137Cs, 90Sr and 239,240Pu, in river water samples these values may reach 15-30%. More than 50% 90Sr and 239,240Pu is able to form complexes with dissolved organic matter. This effect is smaller in saline water. The comparison of the data of 137Cs radioactivity in the surface sediments in 1995 and 2000-2001 showed that the level of radioactivity has decreased.
Resumo:
L’objectif de ce travail est mettre en place un modèle hydro-sédimentaire de dispersion des radionucléides, comme outil d’aide à la décision suite à une hypothétique contamination marine accidentelle. Appliqué à la Rade de Toulon, il utilise le modèle MARS-3D pour l’étude hydrodynamique et le module MIXSED pour la dynamique des différentes classes de sédiments. Les cas d’application présentés concernent le césium et le plutonium, qui ont des affinités très différentes avec les sédiments fins. Les simulations de rejet, effectuées en fond de baie, montrent une variabilité saisonnière marquée, due aux conditions météorologiques typiques, mais aussi aux conditions de débit et de charge sédimentaire associée du fleuve Las, qui se jette dans la Rade. Ainsi, les simulations par forts vents, qui favorisent la circulation et les échanges de masses d’eau, présentent une diminution rapide des activités dissoutes. Par ailleurs, le Vent d’Est hivernal, qui engendre d’importantes crues du Las et un apport de sédiments à la Rade, favorise le piégeage des radionucléides dans les sédiments de fond, où les deuxtiers de la contamination initiale sont piégés après une simulation de deux mois.