982 resultados para Platinum Pharmacokinetics
Resumo:
Résumé Fondement : le développement de solutions d'hydroxy-éthyl-amidons (HEAS) avec peu d'impact sur la coagulation sanguine, mais un effet supérieur sur la volémie, par comparaison aux HEAS couramment utilisés, est d'un grand intérêt clinique. Nous posons l'hypothèse que des solutions de haut poids moléculaire et de bas degré de substitution possèdent ces caractéristiques. Méthode : trente porcs ont été perfusés avec trois HEAS différents (20 ml/kg) de même degré de substitution (0.42) mais de poids moléculaire différent (130, 500 et 900 kDa). Une série de prélèvements sanguins ont été effectués sur 24 heures, sur lesquels des analyses de coagulation sanguine étaient effectuées par thromboélastographie et dosages plasmatiques. De plus, la concentration plasmatique ainsi que le poids moléculaire in vivo ont été déterminés, ainsi que des paramètres de pharmacocinétiques, ceci en se basant sur un modèle bi-compartimental. Résultats : les analyses de thromboélastographie et les tests de coagulation plasmatique n'ont pas démontré d'altération plus marquée de la coagulation sanguine après l'utilisation des solutions des HAES 500 et HAES 900, par comparaison avec celle de HAES 130. Par contre, les HAES 500 et HAES 900 ont présenté une plus grande aire sous la courbe (area under the curve), dans la relation concentration en fonction du temps [1542 (142) g min litre-1, p<0.001, 1701 (321) g min litre-1, p<0.001] par rapport au HAES 130 [1156 (223) g min litre-1]. La demi-vie alpha (t ½α) était plus longue pour les HAES 500 [53.8 (8.6) min, p<0.01] et HAES 900 [57.1 (12.3) min, p<0.01 ]que pour le HAES 130 [39.9 (10.7) min]. La demi-vie beta (t½β) était par contre similaire pour les trois types de HAES [de 332 (100) à 381 (63) min]. Conclusions : pour les HAES de bas degré de substitution, le poids moléculaire n'est pas un facteur clé en ce qui concerne l'altération de la coagulation. La persistance intravasculaire initialement plus longue des HAES de haut poids moléculaire et bas degré de substitution pourrait résulter dans un plus long effet volémique de ces substances. Abstract Background: The development of hydroxyethyl starches (HES) with low impact on blood coagulation but higher volume effect compared with the currently used HES solutions is of clinical interest. We hypothesized that high molecular weight, low-substituted HES might possess these properties. Methods: Thirty pigs were infused with three different HES solutions (20 ml kg-1) with the same degree of molar substitution (0.42) but different molecular weights (130, 500 and 900 kDa). Serial blood samples were taken over 24 h and blood coagulation was assessed by Thromboelastograph® analysis and analysis of plasma coagulation. In addition, plasma concentration and in vivo molecular weight were determined and pharmacokinetic data were computed based on a two-compartment model. Results: Thromboelastograph analysis and plasma coagulation tests did not reveal a more pronounced alteration of blood coagulation with HES 500 and HES 900 compared with HES 130. In contrast, HES 500 and HES 900 had a greater area under the plasma concentration-time curve [1542 (142) g min litre-1, P<0.001, 1701 (321) g min litre-1, P<0.001] than HES 130 [I 156 (223) g min litre-1] and alpha half life (t ½α) was longer for HES 500 [53.8 (8.6) min, P<0.01 ] and HES 900 [57. I (I 2.3) min, P<0.01 ] than for HES 130 [39.9 (I 0.7) min]. Beta half life (t½β), however, was similar for all three types of HES [from 332 (100) to 381 (63) min]. Conclusions. In low-substituted HES, molecular weight is not a key factor in compromising blood coagulation. The longer initial intravascular persistence of high molecular weight lowsubstituted HES might result in a longer lasting volume effect.
Resumo:
ABSTRACT: Pharmacogenetic tests and therapeutic drug monitoring may considerably improve the pharmacotherapy of depression. The aim of this study was to evaluate the relationship between the efficacy of mirtazapine (MIR) and the steady-state plasma concentrations of its enantiomers and metabolites in moderately to severely depressed patients, taking their pharmacogenetic status into account. Inpatients and outpatients (n = 45; mean age, 51 years; range, 19-79 years) with major depressive episode received MIR for 8 weeks (30 mg/d on days 1-14 and 30-45 mg/d on days 15-56). Mirtazapine treatment resulted in a significant improvement in mean Hamilton Depression Rating Scale total score at the end of the study (P < 0.0001). There was no evidence for a significant plasma concentration-clinical effectiveness relationship regarding any pharmacokinetic parameter. The enantiomers of MIR and its hydroxylated (OH-MIR) and demethylated (DMIR) metabolites in plasma samples on days 14 and 56 were influenced by sex and age. Nonsmokers (n = 28) had higher mean MIR plasma levels than smokers (n = 17): S(+)-enantiomer of MIR, 9.4 (SD, 3.9) versus 6.2 (SD, 5.5) ng/mL (P = 0.005); R(-)-enantiomer of MIR, 24.4 (SD, 6.5) versus 18.5 (SD, 4.1) ng/mL (P = 0.003). Only in nonsmokers, plasma levels of S(+)-enantiomer of MIR and metabolites depended on the CYP2D6 genotype. Therefore, high CYP1A2 activity seen in smokers seems to mask the influence of the CYP2D6 genotype. In patients presenting the CYP2B6 *6/*6 genotype (n = 8), S-OH-MIR concentrations were higher those in the other patients (n = 37). Although it is not known if S-OH-MIR is associated with the therapeutic effect of MIR, the reduction of the Hamilton scores was significantly (P = 0.016) more pronounced in the CYP2B6 *6/*6-genotyped patients at the end of the study. The role of CYP2B6 in the metabolism and effectiveness of MIR should be further investigated.
Resumo:
BACKGROUND: Atazanavir-associated hyperbilirubinemia can cause premature discontinuation of atazanavir and avoidance of its initial prescription. We used genomewide genotyping and clinical data to characterize determinants of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202. METHODS: Plasma atazanavir pharmacokinetics and indirect bilirubin concentrations were characterized in HIV-1-infected patients randomized to atazanavir/ritonavir-containing regimens. A subset had genomewide genotype data available. RESULTS: Genomewide assay data were available from 542 participants, of whom 475 also had data on estimated atazanavir clearance and relevant covariates available. Peak bilirubin concentration and relevant covariates were available for 443 participants. By multivariate analysis, higher peak on-treatment bilirubin levels were found to be associated with the UGT1A1 rs887829 T allele (P=6.4×10), higher baseline hemoglobin levels (P=4.9×10), higher baseline bilirubin levels (P=6.7×10), and slower plasma atazanavir clearance (P=8.6×10). For peak bilirubin levels greater than 3.0 mg/dl, the positive predictive value of a baseline bilirubin level of 0.5 mg/dl or higher with hemoglobin concentrations of 14 g/dl or higher was 0.51, which increased to 0.85 with rs887829 TT homozygosity. For peak bilirubin levels of 3.0 mg/dl or lower, the positive predictive value of a baseline bilirubin level less than 0.5 mg/dl with a hemoglobin concentration less than 14 g/dl was 0.91, which increased to 0.96 with rs887829 CC homozygosity. No polymorphism predicted atazanavir pharmacokinetics at genomewide significance. CONCLUSION: Atazanavir-associated hyperbilirubinemia is best predicted by considering UGT1A1 genotype, baseline bilirubin level, and baseline hemoglobin level in combination. Use of ritonavir as a pharmacokinetic enhancer may have abrogated genetic associations with atazanavir pharmacokinetics.
Resumo:
PURPOSE: To present in vitro loading and release characteristics of idarubicin with ONCOZENE (CeloNova BioSciences, Inc, San Antonio, Texas) drug-eluting embolic (DEE) agents and in vivo pharmacokinetics data after transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents in patients with hepatocellular carcinoma. MATERIALS AND METHODS: Loading efficacy of idarubicin with ONCOZENE DEE agents 100 µm and DC Bead (Biocompatibles UK Ltd, Farnham, United Kingdom) DEE agents 100-300 µm was monitored at 10, 20, and 30 minutes loading time by high-pressure liquid chromatography. A T-apparatus was used to monitor the release of idarubicin from the two types of DEE agents over 12 hours. Clinical and 24-hour pharmacokinetics data were recorded after transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents in four patients with unresectable hepatocellular carcinoma. RESULTS: Idarubicin loading in ONCOZENE DEE agents was > 99% at 10 minutes. Time to reach 75% of the release plateau level was 37 minutes ± 6 for DC Bead DEE agents and 170 minutes ± 19 for ONCOZENE DEE agents both loaded with idarubicin 10 mg/mL. After transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents, three partial responses and one complete response were observed with only two asymptomatic grade 3 biologic adverse events. Median time to maximum concentration for idarubicin in patients was 10 minutes, and mean maximum concentration was 4.9 µg/L ± 1.7. Mean area under the concentration-time curve from 0-24 hours was equal to 29.5 µg.h/L ± 20.5. CONCLUSIONS: ONCOZENE DEE agents show promising results with very fast loading ability, a favorable in vivo pharmacokinetics profile with a sustained release of idarubicin during the first 24 hours, and encouraging safety and responses. Histopathologic and clinical studies are needed to evaluate idarubicin release around the DEE agents in tumor tissue and to confirm safety and efficacy.
Resumo:
OBJECTIVE: We investigated whether differences in pharmacokinetics of midazolam, a CYP3A probe, could be demonstrated between subjects with different CYP3A4 and CYP3A5 genotypes. METHODS: Plasma concentrations of midazolam, and of total (conjugated + unconjugated) 1'OH-midazolam, and 4'OH-midazolam were measured after the oral administration of 7.5 mg or of 75 micro g of midazolam in 21 healthy subjects. RESULTS: CYP3A5*7, CYP3A4*1E, CYP3A4*2, CYP3A4*4, CYP3A4*5, CYP3A4*6, CYP3A4*8, CYP3A4*11, CYP3A4*12, CYP3A4*13, CYP3A4*17 and CYP3A4*18 alleles were not identified in the 21 subjects. CYP3A5*3, CYP3A5*6, CYP3A4*1B and CYP3A4*1F alleles were identified in 20, 1, 4 and 2 subjects, respectively. No statistically significant differences were observed for the AUC(inf) values between the different genotypes after the 75- micro g or the 7.5-mg dose. CONCLUSION: Presently, CYP3A4 and CYP3A5 genotyping methods do not sufficiently reflect the inter-individual variability of CYP3A activity.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Introduction Women with Chagas disease receiving treatment with nifurtimox are discouraged from breast feeding. Many patients who would receive treatment with nifurtimox live in extreme poverty, have limited access to resources such as clean water and baby formula and may not have safe alternatives to breast milk. Aim We aimed to estimate, using limited available pharmacokinetics data, potential infant exposure to nifurtimox through breast milk. Methods Original nifurtimox plasma concentrations were obtained from published studies. Pharmacokinetic parameters were estimated using non-linear mixed-effect modelling with NONMEM V.VI. A total of 1000 nifurtimox plasma-concentration profiles were simulated and used to calculate the amount of drug that an infant would be exposed to, if breast fed 150 ml/kg/day. Results Breast milk concentrations on the basis of peak plasma levels (1361 ng/ml) and milk-plasma ratio were estimated. We calculated infant nifurtimox exposure of a breastfed infant of a mother treated with this drug to be below 10% of the maternal weight-adjusted dose, even if milk-plasma ratio were overestimated. Simulation led to similar estimates. Discussion Risk for significant infant exposure to nifurtimox through breast milk seems small and below the level of exposure of infants with Chagas disease receiving nifurtimox treatment. This potential degree of exposure may not justify discontinuation of breast feeding.