248 resultados para Plateaus
Resumo:
The Paraná Magmatic Province was generated by a large volcanic event occurred in the Lower Cretaceous, it was a phenomenon that preceded the fragmentation of the supercontinent Gondwana. In Brazil the volcanic rocks overlying about 75% of the surface of the Parana basin being the Serra Geral Formation essentially represented by basalts and andesites of tholeiitic nature and subordinate porphyritic rhyodacites, called Chapecó type and aphyric rhyolites, Palms type. Based on the chemical compositions, rocks of Palmas type are subdivided into Santa Maria, Clevelândia, Caxias do Sul, Jacuí and Anita Garibaldi. Rocks of Chapecó type are grouped into three distinct subtypes called Guarapuava, Tamarana and Ourinhos. These acidic rocks that overlying basalts are of two main types: high-Ti (Paranapanema, Pitanga and Urubici) and low-Ti (Gramado, Esmeralda and Ribeira). Representative profiles of these rocks were studied in detail in order to establish the lithostratigraphy and Chemostratigraphy of Palmas and Chapecó type. To do this was made a field work and the use of a database with 1109 samples with their geographical coordinates and geochemical information of major and trace elements, which were launched in maps generated by Google Earth. From these maps, it was verified that rocks of the Palmas type are distributed predominantly in the south region of the basin in the state of Rio Grande do Sul, accumulated along Torres Syncline, while those Chapecó type occur in the plateaus of midwestern Paraná, in this region was observed that Chapecó type overlap those Palmas type. In the profiles studied, within Palmas type, Caxias do Sul type is spread throughout the southern region of the basin, occurring at the base of the acid volcanic sequences, in other words, they are older compared to the others. It was also observed that the rocks of Santa Maria and Anita Garibaldi type occupy the top of the sequences, both covering rocks of Caxias do Sul..
Estudo do meio físico e caracterização da capacidade de suporte natural da região de Pirassununga/SP
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A complete understanding of the glass transition isstill a challenging problem. Some researchers attributeit to the (hypothetical) occurrence of a static phasetransition, others emphasize the dynamical transitionof mode coupling-theory from an ergodic to a non ergodicstate. A class of disordered spin models has been foundwhich unifies both scenarios. One of these models isthe p-state infinite range Potts glass with p>4, whichexhibits in the thermodynamic limit both a dynamicalphase transition at a temperature T_D, and a static oneat T_0 < T_D. In this model every spins interacts withall the others, irrespective of distance. Interactionsare taken from a Gaussian distribution.In order to understand better its behavior forfinite number N of spins and the approach to thethermodynamic limit, we have performed extensive MonteCarlo simulations of the p=10 Potts glass up to N=2560.The time-dependent spin-autocorrelation function C(t)shows strong finite size effects and it does not showa plateau even for temperatures around the dynamicalcritical temperature T_D. We show that the N-andT-dependence of the relaxation time for T > T_D can beunderstood by means of a dynamical finite size scalingAnsatz.The behavior in the spin glass phase down to atemperature T=0.7 (about 60% of the transitiontemperature) is studied. Well equilibratedconfigurations are obtained with the paralleltempering method, which is also useful for properlyestablishing static properties, such as the orderparameter distribution function P(q). Evidence is givenfor the compatibility with a one step replica symmetrybreaking scenario. The study of the cumulants of theorder parameter does not permit a reliable estimation ofthe static transition temperature. The autocorrelationfunction at low T exhibits a two-step decay, and ascaling behavior typical of supercooled liquids, thetime-temperature superposition principle, is observed. Inthis region the dynamics is governed by Arrheniusrelaxations, with barriers growing like N^{1/2}.We analyzed the single spin dynamics down to temperaturesmuch lower than the dynamical transition temperature. We found strong dynamical heterogeneities, which explainthe non-exponential character of the spin autocorrelationfunction. The spins seem to relax according to dynamicalclusters. The model in three dimensions tends to acquireferromagnetic order for equal concentration of ferro-and antiferromagnetic bonds. The ordering has differentcharacteristics from the pure ferromagnet. The spinglass susceptibility behaves like chi_{SG} proportionalto 1/T in the region where a spin glass is predicted toexist in mean-field. Also the analysis of the cumulantsis consistent with the absence of spin glass orderingat finite temperature. The dynamics shows multi-scalerelaxations if a bimodal distribution of bonds isused. We propose to understand it with a model based onthe local spin configuration. This is consistent with theabsence of plateaus if Gaussian interactions are used.
Resumo:
In base ad una recensione esaustiva dei riferimenti alla musica e al sonoro nella produzione filosofica di Gilles Deleuze e Félix Guattari, la presente ricerca s’incentra sulla posizione che il pensiero musicale di John Cage occupa in alcuni testi deleuziani. Il primo capitolo tratta del periodo creativo di Cage fra il 1939 e il 1952, focalizzandosi su due aspetti principali: la struttura micro-macrocosmica che contraddistingue i suoi primi lavori, e i quattro elementi che in questo momento sintetizzano per Cage la composizione musicale. Questi ultimi sono considerati in riferimento alla teoria della doppia articolazione che Deleuze e Guattari riprendono da Hjelmslev; entrambi gli aspetti rimandano al sistema degli strati e della stratificazione esposta su Mille piani. Il secondo capitolo analizza la musica dei decenni centrali della produzione cagiana alla luce del luogo in Mille piani dove Cage è messo in rapporto al concetto di “piano fisso sonoro”. Un’attenzione particolare è posta al modo in cui Cage concepisce il rapporto fra durata e materiali sonori, e al grado variabile in cui sono presenti il caso e l’indeterminazione. Le composizioni del periodo in questione sono inoltre viste in riferimento al concetto deleuzo-guattariano di cartografia, e nelle loro implicazioni per il tempo musicale. L’ultimo quindicennio della produzione di Cage è considerata attraverso il concetto di rizoma inteso come teoria delle molteplicità. In primo luogo è esaminata la partitura di Sylvano Bussotti che figura all’inizio di Mille piani; in seguito, i lavori testuali e musicali di Cage sono considerati secondo le procedure compositive cagiane del mesostico, delle parentesi di tempo che concorrono a formare una struttura variabile, e dell’armonia anarchica dell’ultimo Cage.
Resumo:
Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.
Resumo:
OBJECTIVES: Bone attrition probably constitutes remodeling of the bone, resulting in flattening or depression of the articular surfaces. Defining bone attrition is challenging because it is an accentuation of the normal curvature of the tibial plateaus. We aimed to define bone attrition on magnetic resonance imaging (MRI) of the knee using information from both radiographs and MRIs, and to assess whether bone attrition is common prior to end stage disease osteoarthritis (OA) in the tibio-femoral joint. METHODS: All knees of participants in the community-based sample of the Framingham OA Study were evaluated for bone attrition in radiographs and MRIs. Radiographs were scored based on templates designed to outline the normal contours of the tibio-femoral joint. MRIs were analyzed using the semi-quantitative Whole-Organ Magnetic Resonance Imaging Scoring (WORMS) method. The prevalence of bone attrition was calculated using two different thresholds for MRI scores. RESULTS: Inter-observer agreement for identification of bone attrition was substantial for the radiographs (kappa=0.71, 95% CI 0.67-0.81) and moderate for MRI (kappa=0.56, 95% CI 0.40-0.72). Of 964 knees, 5.7% of the radiographs showed bone attrition. Of these, 91% of MRIs were also read as showing bone attrition. We selected a conservative threshold for bone attrition on MRI scoring (> or = 2 on a 0-3 scale) based on agreement with attrition on the radiograph or when bone attrition on MRI co-occurred with cartilage loss on OA. Using this threshold for bone attrition on MRI, bone attrition was common in knees with OA. For example, in knees with mild OA but no joint space narrowing, 13 of 88 MRIs (14.8%) showed bone attrition. CONCLUSIONS: Using MRI we found that many knees with mild OA without joint narrowing on radiographs had bone attrition, even using conservative definitions. The validity of our definition of bone attrition should be evaluated in further studies. Bone attrition may occur in milder OA and at earlier stages of disease than previously thought.
Resumo:
We use various data sets, including images from the High Resolution Imaging Science Experiment camera (HiRISE), to examine the ejecta of the generally fresh-looking Hale crater that occurs in the rugged mountain terrain of Nereidum Montes in the northern rim materials of the Argyre impact structure on Mars. Our investigation reveals that the distal parts of the Hale crater ejecta and other basin deposits behave like viscous flows, which we attribute to the secondary flow of ejecta mixed with water–ice-rich basin materials. Consistent with water-enrichment of the basin materials, our mapping further reveals occasionally deformed surfaces, including highly conspicuous features such as mounds and fractured plateaus that we interpret to be a result of periglacial modification, subsequent (including possibly present-day) to the transient localized melting and fluvial erosion caused by Hale-impact-generated heating. In particular, our morphometric analysis of a well-defined valley system west of Hale crater suggests that it may have been formed through hydrologic/glacial activity prior to the Hale impact, with additional modification resulting from the impact and subsequent geologic and hydrologic phenomena including glacial and periglacial activity.
Resumo:
A swarm of minette and melanephelinite dikes is exposed over 2500 km2 in and near the Wasatch Plateau, central Utah, along the western margin of the Colorado Plateaus in the transition zone with the Basin and Range province. To date, 110 vertical dikes in 25 dike sets have been recognized. Strikes shift from about N80-degrees-W for 24 Ma dikes, to about N60-degrees-W for 18 Ma, to due north for 8-7 m.y. These orientations are consistent with a shift from east-west Oligocene compression associated with subduction to east-west late Miocene crustal extension. Minettes are the most common rock type; mica-rich minette and mica-bearing melanephelinite occurs in 24 Ma dikes, whereas more ordinary minette is found in 8-7 Ma dikes. One melanephelinite dike is 18 Ma. These mafic alkaline rocks are transitional to one another in modal and major element composition but have distinctive trace element patterns and isotopic compositions; they appear to have crystallized from primitive magmas. Major, trace element, and Nd-Sr isotopic data indicate that melanephelinite, which has similarities to ocean island basalt, was derived from small degree melts of mantle with a chondritic Sm/Nd ratio probably located in the asthenosphere, but it is difficult to rule out a lithospheric source. In contrast, mica-bearing rocks (mica melanephelinite and both types of minette) are more potassic and have trace element patterns with strong Nb-Ta depletions and Sr-Nd isotopic compositions caused by involvement with a component from heterogeneously enriched lithospheric mantle with long-term enrichment of Rb or light rare earth elements (REE) (epsilon Nd as low as - 15 in minette). Light REE enrichment must have occurred anciently in the mid-Proterozoic when the lithosphere was formed and is not a result of Cenozoic subduction processes. After about 25 Ma, foundering of the subducting Farallon plate may have triggered upwelling of warm asthenospheric mantle to the base of the lithosphere. Melanephelinite magma may have separated from the asthenosphere and, while rising through the lithosphere, provided heat for lithospheric magma generation. Varying degrees of interaction between melanephelinite and small potassic melt fractions derived from the lithospheric mantle can explain the gradational character of the melanephelinite to minette suite.
Resumo:
Tissue N analysis a tool available for N management of turfgrass. However, peer-reviewed calibration studies to determine optimum tissue N values are lacking. A field experiment with a mixed cool-season species lawn and a greenhouse experiment with Kentucky bluegrass (Poa pratensis L.) were conducted across 2 yr, each with randomized complete block design. Treatments were N application rates between 0 and 587 kg N ha-1 yr-1. In the field experiment, clipping samples were taken monthly from May to September, dried, ground, and analyzed for total N. Clippings samples were collected one to two mowings after plots were fertilized. Linear plateau models comparing relative clipping yield, Commission Internationale de l' Eclairage hue, and CM1000 index to leaf N concentrations were developed. In the greenhouse experiment, clipping samples were taken every 2 wk from May to October and composited across sample dates for leaf N analysis. Color and clipping yields were related to leaf N concentrations using linear plateau models. These models indicated small marginal improvements in growth or color when leaf N exceeded 30 g kg-1, suggesting that a leaf N test can separate turf with optimum leaf N concentrations from turf with below optimum leaf N concentrations. Plateaus in leaf N concentrations with increasing N fertilizer rates suggest, however, that this test may be unable to identify sites with excess available soil N when turf has been mowed before tissue sampling.
Resumo:
On the basis of their respective eruptive environments and chemical characteristics, alkalic dolerite sills from the northern Pigafetta Basin (Site 800) and tholeiitic pillow lavas from the Mariana Basin (Site 802) sampled during Ocean Drilling Program Leg 129 are considered to represent examples of the widespread mid-Cretaceous volcanic event in the western Pacific. Both groups of basic rocks feature mild, low-grade, anoxic smectite-celadonite-carbonate-pyrite alteration; late-stage oxidation is very limited in extent, with the exception of the uppermost sill unit at Site 800. The aphyric and nonvesicular Site 800 alkalic dolerite sills are all well-evolved mineralogically and chemically, being mainly of hawaiite composition, and are similar to ocean island basalts. They are characterized by high contents of incompatible elements (for example, 300-400 ppm Zr), well-fractionated rare earth element patterns ([La/Yb]N 18-21) and HIMU isotopic characters. They probably represent deep-sea, lateral, intrusive off-shoots from nearby seamounts of similar age. The olivine-plagioclase +/- clinopyroxene phyric tholeiitic pillow lavas and thin flows of Site 802 are nonvesicular and quench-textured throughout. Relative to normal-type mid-ocean ridge basalt, they are enriched in large-ion-lithophile elements, exhibit flat (unfractionated) rare earth element patterns and have distinctive (lower) Zr/Nb, Zr/Ta, La/Ta, and Hf/Th ratios. Overall they are compositionally and isotopically similar to the mid-Cretaceous tholeiites of the Nauru basin and the Ontong-Java and Manihiki plateaus. The Site 802 tholeiites differ from the thickened crustal segments of the oceanic plateaus, however, in apparently representing only a thin veneer over the local basement in an off-axis environment.
Resumo:
During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.
Resumo:
Sites 759 through 764 were drilled during Ocean Drilling Program Leg 122 on the Exmouth and Wombat plateaus off northwest Australia, eastern Indian Ocean. Radiolarian recovery was generally poor due to unsuitable lithofacies. A few Quaternary radiolarian faunas were recovered from most of the sites. Rare and poorly preserved Oligocene and Eocene radiolarian faunas were recovered from Holes 760A, 761B, 761C, and 762B. Poorly preserved Cretaceous radiolarians occur in samples from Holes 761B, 762C, 763B, and 763C. Chert intervals from Cores 122-761B-28X, 122-761C-5R, and 122-761C-6R contain moderately well-preserved Cretaceous radiolarian faunas (upper Albian, mid- to upper Cenomanian, and mid-Albian, respectively). Rare fragments of Upper Triassic radiolarians were recovered from sections in Holes 759B, 760B, and 764A. The only well-preserved pre-Quaternary radiolarians are in lower and upper Paleocene faunas (Bekoma campechensis Zone) recovered from Site 761, Sections 122-761B-16X-1 to 122-761C-19X-CC. The composition of these faunas differs somewhat from that of isolated coeval Paleocene faunas from Deep Sea Drilling Project sites in the Atlantic, Gulf of Mexico, tropical Pacific, eastern Indian Ocean, and near Spain and North Africa, as well as from several on-land sites in North America, Cuba, and the USSR.
Resumo:
Basalts from different structural provinces in the ocean basins, such as mid-ocean ridges, island arcs, and oceanic plateaus, show marked differences in major and minor element composition stemming from differences in magma source. In addition, there are variations even within individual provinces, based on such processes as crystal fractionation, secondary alteration, and hydrothermal alteration. It is also known that hydrothermal processes can cause changes in the gas composition of submarine basalts. For example, Zolotarev et al. (1978) have established that hydrothermal alteration frequently causes an increase in the CO2 content of basalts. If the homogeneity in composition and concentration of organic gases in oceanic basalts is associated with degassing during epimagmatic alteration, it would be interesting to investigate the relative abundance of gas phases in young basalts from midoceanic ridges. This chapter deals with the distribution of organic gases and CO2 in young basalts recovered on Leg 65 from the Gulf of California. Our aim was to establish the relationship between gas composition and degree of alteration.
Resumo:
Numerous large igneous provinces formed in the Pacific Ocean during Early Cretaceous time, but their origins and relations are poorly understood. We present new geochronological and geochemical data on rocks from the Manihiki Plateau and compare these results to those for other Cretaceous Pacific plateaus. A dredged Manihiki basalt gives an 40Ar-39Ar age of 117.9+/-3.5 Ma (2 sigma), essentially contemporaneous with the Ontong Java Plateau ~2500 km to the west, and the possibly related Hikurangi Plateau ~3000 km to the south. Drilled Manihiki lavas are tholeiitic with incompatible trace element abundances similar to those of Ontong Java basalts. These lavas may result from high degrees of partial melting during the main eruptive phase of plateau formation. There are two categories of dredged lavas from the Danger Islands Troughs, which bisect the plateau. The first is alkalic lavas having strong enrichments in light rare earth and large-ion lithophile elements; these lavas may represent late-stage activity, as one sample yields an 40Ar-39Ar age of 99.5+/-0.7 Ma. The second category consists of tholeiitic basalts with U-shaped incompatible element patterns and unusually low abundances of several elements; these basalts record a mantle component not previously observed in Manihiki, Ontong Java, or Hikurangi lavas. Their trace element characteristics may result from extensive melting of depleted mantle wedge material mixed with small amounts of volcaniclastic sediment. We are unaware of comparable basalts elsewhere.