919 resultados para Plasmodium vivax malaria
Resumo:
To infer recent patterns of malaria transmission, we measured naturally acquired IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein (MSP)-1 of both Plasmodium vivax (PvMSP-1(19)) and Plasmodium falciparum (PfMSP-1(19)) in remote malaria-exposed populations of the Amazon Basin. Community-based cross-sectional surveys were carried out between 2002 and 2003 in subjects of all age groups living along the margins of the Unini and Jaú rivers, Northwestern Brazil. We found high prevalence rates of IgG antibodies to PvMSP-1(19) (64.0 - 69.6%) and PfMSP-1(19) (51.6 - 52.0%), with significant differences in the proportion of subjects with antibodies to PvMSP-1(19) according to age, place of residence and habitual involvement in high-risk activities, defining some groups of highly exposed people who might be preferential targets of malaria control measures. In contrast, no risk factor other than age was significantly associated with seropositivity to PfMSP-1(19). Only 14.1% and 19.3% of the subjects tested for antibodies to PvMSP-1(19) and PfMSP-1(19) in consecutive surveys (142 - 203 days apart) seroconverted or had a three fold or higher increase in the levels of antibodies to these antigens. We discuss the extent to which serological data correlated with the classical malariometric indices and morbidity indicators measured in the studied population at the time of the seroprevalence surveys and highlight some limitations of serological data for epidemiological inference.
Resumo:
French Guiana is one of the areas in South America most affected by malaria and where the disease has become a serious public health problem. In spite of this situation, little recent entomological data are available from the main localities where the disease occurs, even though they are crucial for development of an effective vector control strategy. A longitudinal entomological survey was carried out from March 2000-February 2002 in three Amerindian villages, namely Twenké, Taluène and Cayodé, located in the Amazonian forest of the Upper-Maroni area, to assess anopheline mosquitoes and malaria transmission dynamics. Anopheles darlingi (Diptera: Culicidae) was the most abundant mosquito species caught during the study. This efficient American malaria vector was active the entire year, but showed an evident peak of abundance during the main rainfall season, from April-June, with an average human biting rate of 255.5 bites per person per night. Parity rates were homogeneous all year, indicating no significant seasonal variability in female survival rates. Estimated vectorial capacity indices were higher during the rainy season, even though the risk of transmission was present throughout the year (VCI > 1). A total of 14 An. darlingi were found infected with Plasmodium falciparum, Plasmodium vivax or Plasmodium malariae. The annual circumsporozoite indices were 0.15, 0.14 and 0.05, and the entomological inoculation rates were 22.8, 27.4 and 14.4 infected bites per person per year in Twenké, Taluène and Cayodé, respectively. An. darlingiwas endo-exophagic and rather exophilic in these localities. The species was collected throughout the night but was more aggressive between 21:30-03:30 h and after 05:30 h. Parity rates were homogeneous during the entire night. Impregnated hammock and/or bed nets, coupled with the use of mosquito repellents, as well as the early treatment of malarial cases, appear to be the most suitable tools for fighting malaria in these Amerindian villages since the spraying of residual insecticides is inefficient because of vector biology and the housing structure.
Resumo:
The naturally occurring clonal diversity among field isolates of the major human malaria parasite Plasmodium vivax remained unexplored until the early 1990s, when improved molecular methods allowed the use of blood samples obtained directly from patients, without prior in vitro culture, for genotyping purposes. Here we briefly review the molecular strategies currently used to detect genetically distinct clones in patient-derived P. vivax samples, present evidence that multiple-clone P. vivax infections are commonly detected in areas with different levels of malaria transmission and discuss possible evolutionary and epidemiological consequences of the competition between genetically distinct clones in natural human infections. We suggest that, when two or more genetically distinct clones are present in the same host, intra-host competition for limited resources may select for P. vivax traits that represent major public health challenges, such as increased virulence, increased transmissibility and antimalarial drug resistance.
Resumo:
Nine colonies of five sibling species members of Anopheles barbirostris complexes were experimentally infected with Plasmodium falciparum and Plasmodium vivax. They were then dissected eight and 14 days after feeding for oocyst and sporozoite rates, respectively, and compared with Anopheles cracens. The results revealed that Anopheles campestris-like Forms E (Chiang Mai) and F (Udon Thani) as well as An. barbirostris species A3 and A4 were non-potential vectors for P. falciparum because 0% oocyst rates were obtained, in comparison to the 86.67-100% oocyst rates recovered from An. cracens. Likewise, An. campestris-like Forms E (Sa Kaeo) and F (Ayuttaya), as well as An. barbirostris species A4, were non-potential vectors for P. vivax because 0% sporozoite rates were obtained, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. barbirostris species A1, A2 and A3 were low potential vectors for P. vivax because 9.09%, 6.67% and 11.76% sporozoite rates were obtained, respectively, in comparison to the 85.71-92.31% sporozoite rates recovered from An. cracens. An. campestris-like Forms B and E (Chiang Mai) were high-potential vectors for P. vivax because 66.67% and 64.29% sporozoite rates were obtained, respectively, in comparison to 90% sporozoite rates recovered from An. cracens.
Resumo:
Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.
Resumo:
Reliable molecular markers are essential for a better understanding of the molecular epidemiology of Plasmodium vivax, which is a neglected human malaria parasite. The aim of this study was to analyze the genetic diversity of P. vivax isolates from the Brazilian Amazon using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the highly polymorphic merozoite surface protein-3alpha (PvMSP-3α) gene. To accomplish this, 60 isolates of P. vivax from different endemic areas in the Brazilian Amazon were collected. The PvMSP-3α gene was amplified by nested-PCR. Three major types of the PvMSP-3α locus were detected at different frequencies: type A (68%), B (15%) and C (17%). A single sample showed two PCR fragments, which corresponded to infection with types A and C. PCR-RFLP analysis using the HhaI restriction enzyme for 52 isolates clearly identified 11 haplotypes, eight of which were from type A, two from type B and only one from type C. Seven other isolates did not show a clear pattern using PCR-RFLP. This result might be due to multiple clone infections. This study showed a high diversity of the PvMSP-3α gene among P. vivax isolates from the Brazilian Amazon, but also indicated that the detection performance of PCR-RFLP of the PvMSP-3α gene may not be sufficient to detect multiple clone infections.
Resumo:
In Brazil, malaria still remains a clinically important febrile syndrome for local populations and travelers, occurring mostly in the Amazon Basin. This review aims to report the main efforts employed to control this disease since the 1940s and the emergence of Plasmodium falciparum and Plasmodium vivax chemoresistance to chloroquine and sulphadoxine-pyrimethamine among other drugs. Additionally, in vivo, in vitro and molecular studies as well as malaria chemoresistance consequences on disease morbidity and policy treatment guidelines were commented.
Resumo:
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.
Resumo:
In this study, we determined whether the treatment of asymptomatic parasites carriers (APCs), which are frequently found in the riverside localities of the Brazilian Amazon that are highly endemic for malaria, would decrease the local malaria incidence by decreasing the overall pool of parasites available to infect mosquitoes. In one village, the treatment of the 19 Plasmodium falciparum-infected APCs identified among the 270 residents led to a clear reduction (Z = -2.39, p = 0.017) in the incidence of clinical cases, suggesting that treatment of APCs is useful for controlling falciparum malaria. For vivax malaria, 120 APCs were identified among the 716 residents living in five villages. Comparing the monthly incidence of vivax malaria in two villages where the APCs were treated with the incidence in two villages where APCs were not treated yielded contradictory results and no clear differences in the incidence were observed (Z = -0.09, p = 0.933). Interestingly, a follow-up study showed that the frequency of clinical relapse in both the treated and untreated APCs was similar to the frequency seen in patients treated for primary clinical infections, thus indicating that vivax clinical immunity in the population is not species specific but only strain specific.
Resumo:
The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.
Resumo:
Nucleotide sequence analyses of the Pvs48/45 and Pvs47 genes were conducted in 46 malaria patients from the Republic of Korea (ROK) (n = 40) and returning travellers from India (n = 3) and Indonesia (n = 3). The domain structures, which were based on cysteine residue position and secondary protein structure, were similar between Plasmodium vivax (Pvs48/45 and Pvs47) and Plasmodium falciparum (Pfs48/45 and Pfs47). In comparison to the Sal-1 reference strain (Pvs48/45, PVX_083235 and Pvs47, PVX_083240), Korean isolates revealed seven polymorphisms (E35K, H211N, K250N, D335Y, A376T, I380T and K418R) in Pvs48/45. These isolates could be divided into five haplotypes with the two major types having frequencies of 47.5% and 20%, respectivelfy. In Pvs47, 10 polymorphisms (F22L, F24L, K27E, D31N, V230I, M233I, E240D, I262T, I273M and A373V) were found and they could be divided into four haplotypes with one major type having a frequency of 75%. The Pvs48/45 isolates from India showed a unique amino acid substitution site (K26R). Compared to the Sal-1 and ROK isolates, the Pvs47 isolates from travellers returning from India and Indonesia had amino acid substitutions (S57T and I262K). The current data may contribute to the development of the malaria transmission-blocking vaccine in future clinical trials.
Resumo:
Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL)-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF)-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.
Resumo:
The global emergence of Plasmodium vivax strains resistant to chloroquine (CQ) since the late 1980s is complicating the current international efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria has already reached an alarming prevalence in Indonesia, East Timor and Papua New Guinea. More recently, in vivo studies have documented CQ-resistant P. vivax infections in Guyana, Peru and Brazil. Here, we summarise the available data on CQ resistance across P. vivax-endemic areas of Latin America by combining published in vivo and in vitro studies. We also review the current knowledge regarding the molecular mechanisms of CQ resistance in P. vivax and the prospects for developing and standardising reliable molecular markers of drug resistance. Finally, we discuss how the Worldwide Antimalarial Resistance Network, an international collaborative effort involving malaria experts from all continents, might contribute to the current regional efforts to map CQ-resistant vivax malaria in South America.
Resumo:
Plasmodium vivax is the most widespread parasite causing malaria, being especially prevalent in the Americas and Southeast Asia. Children are one of the most affected populations, especially in highly endemic areas. However, there are few studies evaluating the therapeutic response of infants with vivax malaria. This study retrospectively evaluated the parasitaemia clearance in children diagnosed with vivax malaria during the first five days of exclusive treatment with chloroquine (CQ). Infants aged less than six months old had a significantly slower parasitaemia clearance time compared to the group of infants and children between six months and 12 years old (Kaplan-Meier survival analysis; Wilcoxon test; p = 0.004). The impaired clearance of parasitaemia in younger children with vivax malaria is shown for the first time in Latin America. It is speculated that CQ pharmacokinetics in young children with vivax malaria is distinct, but this specific population may also allow the detection of CQ-resistant parasites during follow-up, due to the lack of previous immunity.
Resumo:
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.