977 resultados para Plant-pollinator Interactions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissecting drivers of plant defence investment remains central for understanding the assemblage of communities across different habitats. There is increasing evidence that direct defence strategies against herbivores, including secondary metabolites production, differ along ecological gradients in response to variation in biotic and abiotic conditions. In contrast, intraspecific variation in indirect defences remains unexplored. Here, we investigated variation in herbivory rate, resistance to herbivores, and indirect defences in ant-attracting Vicia species along the elevation gradient of the Alps. Specifically, we compared volatile organic compounds (VOCs) and ant attraction in high and low elevation ecotypes. Consistent with adaptation to the lower herbivory conditions that we detected at higher elevations in the field, high elevation plants were visited by fewer ants and were more susceptible to herbivore attack. In parallel, constitutive volatile organic compound production and subsequent ant attraction were lower in the high elevation ecotypes. We observed an elevation-driven trade-off between constitutive and inducible production of VOCs and ant attraction along the environmental cline. At higher elevations, inducible defences increased, while constitutive defence decreased, suggesting that the high elevation ecotypes compensate for lower indirect constitutive defences only after herbivore attack. Synthesis. Overall, direct and indirect defences of plants vary along elevation gradients. Our findings show that plant allocation to defences are subject to trade-offs depending on local conditions, and point to a feedback mechanism linking local herbivore pressure, predator abundance and the defence investment of plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Central to the mutualistic arbuscular mycorrhizal symbiosis is the arbuscule, the site where symbiotic phosphate is delivered. Initial investigations in legumes have led to the exciting observation that symbiotic phosphate uptake not only enhances plant growth but also regulates arbuscule dynamics and is, furthermore, required for maintenance of the symbiosis. This review evaluates the possible role of the phosphate ion, not only as a nutrient but also as a signal that is necessary for reprogramming the host cortex cell for symbiosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seventy bacterial isolates from the rhizosphere of tomato were screened for antagonistic activity against the tomato foot and root rot-causing fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici. One isolate, strain PCL1391, appeared to be an efficient colonizer of tomato roots and an excellent biocontrol strain in an F. oxysporum/tomato test system. Strain PCL1391 was identified as Pseudomonas chlororaphis and further characterization showed that it produces a broad spectrum of antifungal factors (AFFs), including a hydrophobic compound, hydrogen cyanide, chitinase(s), and protease(s). Through mass spectrometry and nuclear magnetic resonance, the hydrophobic compound was identified as phenazine-1-carboxamide (PCN). We have studied the production and action of this AFF both in vitro and in vivo. Using a PCL1391 transposon mutant, with a lux reporter gene inserted in the phenazine biosynthetic operon (phz), we showed that this phenazine biosynthetic mutant was substantially decreased in both in vitro antifungal activity and biocontrol activity. Moreover, with the same mutant it was shown that the phz biosynthetic operon is expressed in the tomato rhizosphere. Comparison of the biocontrol activity of the PCN-producing strain PCL1391 with those of phenazine-1-carboxylic acid (PCA)-producing strains P. fluorescens 2-79 and P. aureofaciens 30-84 showed that the PCN-producing strain is able to suppress disease in the tomato/F. oxysporum system, whereas the PCA-producing strains are not. Comparison of in vitro antifungal activity of PCN and PCA showed that the antifungal activity of PCN was at least 10 times higher at neutral pH, suggesting that this may contribute to the superior biocontrol performance of strain PCL1391 in the tomato/F. oxysporum system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durant el periode d’elaboració d’aquesta tesi hem aprofundit en el coneixement dels factors que controlen les dinàmiques espacio-temporals del límit superior del bosc. Aquest ecotò se situa entre el límit superior del bosc i els prats alpins i és susceptible a canvis ambientals, fet que provoca que fluctuï altitudinalment i latitudinalment en funció d’aquests canvis. Els motius d’aquesta dinàmica s’ha estudiat sovint des d’un punt de vista climàtic, però mai fins ara s’havia estudiat des d’un punt de vista de les interaccions entre organismes. Per aquest fet hem estat evaluant l’efecte de les interaccions planta-planta en la regulació de la dinàmica supraforestal. L’estudi l’hem emmarcat en un context alpí (als Pirineus Catalans) i en un context subàrtic (Lapònia, Suècia), fet que ens ha permès fer un estudi comparatiu en dos ecotons contrastats però homòlegs ecològicament. Hem desenvolupat una sèrie d’experiments considerant diversos factors (augment de temperatura, quantitat de nutrients, presència d’arbust, posició en l’ecotò); en les dues zones d’estudi hem fet una plantació de plançons dels arbres formadors del límit del bosc en les diverses situacions derivades de la combinació d’aquests factors, i hem fet el seguiment fenològic dels plançons durant tres periodes de creixement. Els resultats dels experiments ens han permès veure que les interaccions entre organismes tenen una gran importància en la regulació de la dinàmica supraforestal, tant als Pirineus com a Lapònia. Les interaccions planta-planta i planta-herbívors determinen el reclutament de plançons i per tant l’estructuració de les comunitats supraforestals. Per altra banda, la posició en l’ecotò evidencia la presència d’un gradient bioclimàtic; les manipulacions ambientals de temperatura i nutrients originen una resposta generalment positiva en el desenvolupament dels plançons, indicant que canvis en aquestes variables pot suposar alteracions notables de l’estructura forestal del límit del bosc. Per altra banda en aquest projecte també hem aprofundit en temes relacionats amb l'efecte dels gradients altitudinals en la distribució de plantes vasculars als Pirineus Catalans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durant el periode d’elaboració d’aquesta tesi hem aprofundit en el coneixement dels factors que controlen les dinàmiques espacio-temporals del límit superior del bosc. Aquest ecotò se situa entre el límit superior del bosc i els prats alpins i és susceptible a canvis ambientals, fet que provoca que fluctuï altitudinalment i latitudinalment en funció d’aquests canvis. Els motius d’aquesta dinàmica s’ha estudiat sovint des d’un punt de vista climàtic, però mai fins ara s’havia estudiat des d’un punt de vista de les interaccions entre organismes. Per aquest fet hem estat evaluant l’efecte de les interaccions planta-planta en la regulació de la dinàmica supraforestal. L’estudi l’hem emmarcat en un context alpí (als Pirineus Catalans) i en un context subàrtic (Lapònia, Suècia), fet que ens ha permès fer un estudi comparatiu en dos ecotons contrastats però homòlegs ecològicament. Hem desenvolupat una sèrie d’experiments considerant diversos factors (augment de temperatura, quantitat de nutrients, presència d’arbust, posició en l’ecotò); en les dues zones d’estudi hem fet una plantació de plançons dels arbres formadors del límit del bosc en les diverses situacions derivades de la combinació d’aquests factors, i hem fet el seguiment fenològic dels plançons durant tres periodes de creixement. Els resultats dels experiments ens han permès veure que les interaccions entre organismes tenen una gran importància en la regulació de la dinàmica supraforestal, tant als Pirineus com a Lapònia. Les interaccions planta-planta i planta-herbívors determinen el reclutament de plançons i per tant l’estructuració de les comunitats supraforestals. Per altra banda, la posició en l’ecotò evidencia la presència d’un gradient bioclimàtic; les manipulacions ambientals de temperatura i nutrients originen una resposta generalment positiva en el desenvolupament dels plançons, indicant que canvis en aquestes variables pot suposar alteracions notables de l’estructura forestal del límit del bosc. Per altra banda en aquest projecte també hem aprofundit en temes relacionats amb l'efecte dels gradients altitudinals en la distribució de plantes vasculars als Pirineus Catalans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry-a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system-operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P>1. Entomopathogenic nematodes can function as indirect defence for plants that are attacked by root herbivores. By releasing volatile organic compounds (VOCs), plants signal the presence of host insects and thereby attract nematodes.2. Nonetheless, how roots deploy indirect defences, how indirect defences relate to direct defences, and the ecological consequences of root defence allocation for herbivores and plant biomass are essentially unknown.3. We investigate a natural below-ground tritrophic system, involving common milkweed, a specialist root-boring beetle and entomopathogenic nematodes, and asked whether there is a negative genetic correlation between direct defences (root cardenolides) and indirect defences (emission of volatiles in the roots and nematode attraction), and between constitutive and inducible defences.4. Volatiles of roots were analysed using two distinct sampling methods. First, we collected emissions from living Asclepias syriaca roots by dynamic headspace sampling. This method showed that attacked A. syriaca plants emit five times higher levels of volatiles than control plants. Secondly, we used a solid phase micro-extraction (SPME) method to sample the full pool of volatiles in roots for genetic correlations of volatile biosynthesis.5. Field experiments showed that entomopathogenic nematodes prevent the loss of biomass to root herbivory. Additionally, suppression of root herbivores was mediated directly by cardenolides and indirectly by the attraction of nematodes. Genetic families of plants with high cardenolides benefited less from nematodes compared to low-cardenolide families, suggesting that direct and indirect defences may be redundant. Although constitutive and induced root defences traded off within each strategy (for both direct and indirect defence, cardenolides and VOCs, respectively), we found no trade-off between the two strategies.6. Synthesis. Constitutive expression and inducibility of defences may trade off because of resource limitation or because they are redundant. Direct and indirect defences do not trade off, likely because they may not share a limiting resource and because independently they may promote defence across the patchiness of herbivore attack and nematode presence in the field. Indeed, some redundancy in strategies may be necessary to increase effective defence, but for each strategy, an economy of deployment reduces overall costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction patterns between the dioecious shrub Baccharis concinna Barroso (Asteraceae) and its speciose galling insect community were studied in southeastern Brazil. Two hypotheses were tested in this study: "the differential reproduction and growth hypothesis" that predicts that male plants present fewer reproductive structures and are larger than female plants; and the 'sex-biased herbivory hypothesis' that predicts that male plants support a larger abundance of insect galls than female plants. Plants did not show sexual dimorphism in growth (= mean leaf number). However, male plants had longer shoots and a lower average number of inflorescences than female plants. These results corroborate the hypothesis that male plants grow more and reproduce less than female plants. No statistically significant difference was found in the number of galls between male and female plants, but a sex by environmental effect on gall number was detected. When each species of galling insect was individually analyzed per population of the host plant, the rates of attack varied between sex and population of the host plant, and they were highly variable among the species of galling insects. These results highlight the importance of the interaction between sex and environment in the community structure of galling insects and indicate that other variables besides host sex may influence the patterns of attack by galling herbivores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1406 I. 1407 II. 1408 III. 1410 IV. 1411 V. 1413 VI. 1416 VII. 1418 1418 References 1419 SUMMARY: Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some root-associated pseudomonads sustain plant growth by suppressing root diseases caused by pathogenic fungi. We investigated to which extent select cereal cultivars influence expression of relevant biocontrol traits (i.e., root colonization efficacy and antifungal activity) in Pseudomonas fluorescens CHA0. In this representative plant-beneficial bacterium, the antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN), pyoluteorin (PLT), and hydrogen cyanide (HCN) are required for biocontrol. To monitor host plant effects on the expression of biosynthetic genes for these compounds on roots, we developed fluorescent dual-color reporters suited for flow cytometric analysis using fluorescence-activated cell sorting (FACS). In the dual-label strains, the constitutively expressed red fluorescent protein mCherry served as a cell tag and marker for root colonization, whereas reporter fusions based on the green fluorescent protein allowed simultaneous recording of antifungal gene expression within the same cell. FACS analysis revealed that expression of DAPG and PRN biosynthetic genes was promoted in a cereal rhizosphere, whereas expression of PLT and HCN biosynthetic genes was markedly less sustained. When analyzing the response of the bacterial reporters on roots of a selection of wheat, spelt, and triticale cultivars, we were able to detect subtle species- and cultivar-dependent differences in colonization and DAPG and HCN gene expression levels. The expression of these biocontrol traits was particularly favored on roots of one spelt cultivar, suggesting that a careful choice of pseudomonad-cereal combinations might be beneficial to biocontrol. Our approach may be useful for selective single-cell level analysis of plant effects in other bacteria-root interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P>1. Root herbivores and pathogens interfere with basic below-ground plant function, and can thereby affect plant fitness and spatial and temporal patterns in natural plant communities. However, there has been little development of concepts and theories on below-ground plant defence, a deficit that is in contrast to the abundance of theorizing for above-ground plant parts.2. A review of the past 10 years of research on below-ground plant-herbivore interactions has revealed that, similar to above-ground tissues, root defences can be expressed constitutively or induced upon herbivore attack, and can be classified into direct and indirect traits, tolerance, and escape. Indeed, it has been shown that roots tolerate herbivory by outgrowing or re-growing lost tissues, or resist it by producing secondary metabolites that are toxic to herbivores or attract natural enemies of herbivores.3. We propose that, similar to above-ground plant-herbivore theories, the partition of abiotic and biotic factors over ecological succession can serve as the basis for predicting investment in defence strategies below-ground.4. Investigation of herbivore pressure and root responses along primary and secondary successional gradients suggests that: (i) roots are often fast growing, thinner and softer in early compared to later succession. (ii) Insect and nematode herbivore pressure increases until mid-succession and later decreases. (iii) Mycorrhizal abundance increases with succession, and the composition of fungal species changes through succession, often shifting from arbuscular mycorrhizae to ecto-mycorrhizae.5. Based on these findings, and on classical (above-ground) plant defence theory, we suggest the following set of testable hypotheses for below-ground plant defence: (i) During succession, early plants invest most of their resources in growth and less in defences (associated with a general lack of herbivores and pathogens, and with limited availability of resources in the system), therefore relying more on re-growth (tolerance) strategies. (ii) During mid-succession, a buildup of herbivore pressure facilitates replacement by plant species that exhibit greater direct and indirect defence strategies. (iii) Constitutive and inducible levels of defences may trade-off, and early successional plants should rely more on induction of defences after herbivore attack, whereas late successional plants will increasingly rely on constitutively produced levels of physical and chemical defence. (iv) Successional changes in microbial associations have consequences for root defence by improving plant nutrition and defence expression as well as directly competing for root space; however, toxic or impenetrable root defences may also limit association with root symbionts, and so may constrain the expression of root defence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.