975 resultados para Plant Defensin Gene
Resumo:
Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.
Resumo:
An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.
Resumo:
Transgenic plants of the model legume Lotus japonicus were regenerated by hypocotyl transformation using a bar gene as a selectable marker. The bar encodes for Phosphinothricin Acetyl Transferase that detoxifies phosphinothricin (PPT), the active ingredient of herbicides such as Ignite (AgrEvo) and Basta (Hoechst). Transgenic L. japonicus plants resistant to PPT were positive upon PCR by bar gene-specific primers. In 5 out of 7 independent lines tested, PPT resistance segregated as a single dominant allele indicating a single T-DNA insertion into the plant genome. All regenerated plants were fertile and void of visible somaclonal abnormalities contrary to 14% infertility when antibiotic selectable markers were used. The lack of somaclonal variation, ease of PPT application and low cost of PPT makes this protocol an attractive alternative for the regeneration of transgenic L. japonicus. The production of PPT herbicide-resistant L. japonicus plants may have significant commercial applications in crop production.
Resumo:
GCR1 has been tentatively identified in Arabidopsis thaliana as the first plant G-protein coupled receptor (GPCR) (Josefsson and Rask 1997) implicated in the cytokinin sensory pathway (Plakidou-Dymock et al. 1998). A protein fusion of GCR1 and green fluorescent protein has been expressed in Arabidopsis and shown GCR1 to be located on the plasma membrane. Studies of plants with altered GCR1 expression have led us to question GCR1's involvement in cytokinin signaling. Transgenic Arabidopsis plants containing sense and antisense constructs for GCR1 have been produced and over- and under-expression confirmed. The analysis of 12 antisense and 17 sense lines has failed to reveal the previously reported Dainty phenotype or altered cytokinin sensitivity. We have used the Gauntlet approach to test the plants' response to various plant hormones although this has not yet identified a mutant phenotype. The yeast-two hybrid system has been used and so far there is no evidence to suggest GCR1 interacts with heterotrimeric G proteins. Before GCR1 can be identified as genuine G-protein coupled receptor, the identification of a ligand and a proof of association with heterotrimeric G-proteins should be obtained.
Resumo:
It is generally accepted that two major gene pools exist in cultivated common bean (Phaseolus vulgaris L.), a Middle American and an Andean one. Some evidence, based on unique phaseolin morphotypes and AFLP analysis, suggests that at least one more gene pool exists in cultivated common bean. To investigate this hypothesis, 1072 accessions from a common bean core collection from the primary centres of origin, held at CIAT, were investigated. Various agronomic and morphological attributes (14 categorical and 11 quantitative) were measured. Multivariate analyses, consisting of homogeneity analysis and clustering for categorical data, clustering and ordination techniques for quantitative data and nonlinear principal component analysis for mixed data, were undertaken. The results of most analyses supported the existence of the two major gene pools. However, the analysis of categorical data of protein types showed an additional minor gene pool. The minor gene pool is designated North Andean and includes phaseolin types CH, S and T; lectin types 312, Pr, B and K; and mostly A5, A6 and A4 types alpha-amylase inhibitor. Analysis of the combined categorical data of protein types and some plant categorical data also suggested that some other germplasm with C type phaseolin are distinguished from the major gene pools.
Resumo:
The haploid NK model developed by Kauffman can be extended to diploid genomes and to incorporate gene-by-environment interaction effects in combination with epistasis. To provide the flexibility to include a wide range of forms of gene-by-environment interactions, a target population of environment types (TPE) is defined. The TPE consists of a set of E different environment types, each with their own frequency of occurrence. Each environment type conditions a different NK gene network structure or series of gene effects for a given network structure, providing the framework for defining gene-by-environment interactions. Thus, different NK models can be partially or completely nested within the E environment types of a TPE, giving rise to the E(NK) model for a biological system. With this model it is possible to examine how populations of genotypes evolve in context with properties of the environment that influence the contributions of genes to the fitness values of genotypes. We are using the E(NK) model to investigate how both epistasis and gene-by-environment interactions influence the genetic improvement of quantitative traits by plant breeding strategies applied to agricultural systems. © 2002 Wiley Periodicals, Inc.
Resumo:
In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.
Resumo:
Dissertation submitted to obtain a Ph.D. (Doutoramento) degree in Biology at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas
Resumo:
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.