469 resultados para Pixels
Resumo:
O objetivo deste trabalho foi desenvolver e avaliar um método para estimar a área plantada de soja em escala regional e calcular o erro estatístico associado à estimação. O método (Geosafras), que associa técnicas de amostragem estatística com características das imagens obtidas por sensoriamento remoto orbital, foi aplicado para obter estimativa amostral objetiva da área cultivada com soja, na safra de 2005/2006, no Estado do Rio Grande do Sul. Os municípios produtores de soja, no RS, foram distribuídos em dez estratos, com base em dados pré‑existentes de área cultivada com a cultura. O número de municípios selecionados, em cada estrato, seguiu a regra de alocação de Neyman. Em cada município selecionado, foram aleatorizados pontos correspondentes aos pixels das imagens, classificados como "soja" ou "não soja" após visita a campo. A partir dos dados de 3.000 pontos distribuídos nos 30 municípios selecionados, nos dez estratos, foi estimada a área cultivada com soja no RS, que totalizou 4.069.887 ha, com coeficiente de variação (CV) de 3,4%. Esta estimativa foi consistente com os dados oficiais. O método amostral objetivo estratificado, auxiliado por sensoriamento remoto, permite estimar a área cultivada com soja no Rio Grande do Sul e é capaz de quantificar o erro associado à estimativa realizada.
Resumo:
In this paper we introduce a highly efficient reversible data hiding system. It is based on dividing the image into tiles and shifting the histograms of each image tile between its minimum and maximum frequency. Data are then inserted at the pixel level with the largest frequency to maximize data hiding capacity. It exploits the special properties of medical images, where the histogram of their nonoverlapping image tiles mostly peak around some gray values and the rest of the spectrum is mainlyempty. The zeros (or minima) and peaks (maxima) of the histograms of the image tiles are then relocated to embed the data. The grey values of some pixels are therefore modified.High capacity, high fidelity, reversibility and multiple data insertions are the key requirements of data hiding in medical images. We show how histograms of image tiles of medical images can be exploited to achieve these requirements. Compared with data hiding method applied to the whole image, our scheme can result in 30%-200% capacity improvement and still with better image quality, depending on the medical image content. Additional advantages of the proposed method include hiding data in the regions of non-interest and better exploitation of spatial masking.
Resumo:
This letter presents a lossless data hiding scheme for digital images which uses an edge detector to locate plain areas for embedding. The proposed method takes advantage of the well-known gradient adjacent prediction utilized in image coding. In the suggested scheme, prediction errors and edge values are first computed and then, excluding the edge pixels, prediction error values are slightly modified through shifting the prediction errors to embed data. The aim of proposed scheme is to decrease the amount of modified pixels to improve transparency by keeping edge pixel values of the image. The experimental results have demonstrated that the proposed method is capable of hiding more secret data than the known techniques at the same PSNR, thus proving that using edge detector to locate plain areas for lossless data embedding can enhance the performance in terms of data embedding rate versus the PSNR of marked images with respect to original image.
Resumo:
The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).
Resumo:
Resumo: O objetivo deste trabalho foi desenvolver um método para identificação e monitoramento, em tempo quase real, de áreas agrícolas cultivadas com lavouras temporárias de verão, com uso de imagens orbitais Modis, no Estado do Rio Grande do Sul. A metodologia foi denominada detecção de áreas agrícolas em tempo quase real (DATQuaR) e utiliza imagens do sensor Modis referentes aos índices de vegetação (IVs) EVI e NDVI, disponibilizadas em composições de 16 dias. Foram utilizadas quatro métricas para agregar os valores de IVs por pixel, dentro dos períodos bimensais avaliados: média, máximo, mínimo e mediana. Para gerar as imagens (ImDATQuaR), a imagem agregada para o período imediatamente anterior foi subtraída da imagem agregada para o período em monitoramento. Essas imagens foram classificadas por meio de fatiamento e comparadas às classes de referência obtidas pela interpretação visual de pixels aleatorizados em imagens Landsat. Cada ImDATQuaR gerou dois mapas DATQuaR: um com filtragem de moda com janela 3x3 pixels e outro sem filtragem. O melhor mapa DATQuaR é produzido com uso de imagens EVI e filtragem - ao se subtrair a imagem de mínimo valor para o período anterior da imagem de máximo valor para o período monitorado - e atinge concordâncias com a referência superiores a 81%.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
Tässä työssä raportoidaan harjoitustyön kehittäminen ja toteuttaminen Aktiivisen- ja robottinäön kurssille. Harjoitustyössä suunnitellaan ja toteutetaan järjestelmä joka liikuttaa kappaleita robottikäsivarrella kolmiuloitteisessa avaruudessa. Kappaleidenpaikkojen määrittämiseen järjestelmä käyttää digitaalisia kuvia. Tässä työssä esiteltävässä harjoitustyötoteutuksessa käytettiin raja-arvoistusta HSV-väriavaruudessa kappaleiden segmentointiin kuvasta niiden värien perusteella. Segmentoinnin tuloksena saatavaa binäärikuvaa suodatettiin mediaanisuotimella kuvan häiriöiden poistamiseksi. Kappaleen paikkabinäärikuvassa määritettiin nimeämällä yhtenäisiä pikseliryhmiä yhtenäisen alueen nimeämismenetelmällä. Kappaleen paikaksi määritettiin suurimman nimetyn pikseliryhmän paikka. Kappaleiden paikat kuvassa yhdistettiin kolmiuloitteisiin koordinaatteihin kalibroidun kameran avulla. Järjestelmä liikutti kappaleita niiden arvioitujen kolmiuloitteisten paikkojen perusteella.
Resumo:
La théorie de l'autocatégorisation est une théorie de psychologie sociale qui porte sur la relation entre l'individu et le groupe. Elle explique le comportement de groupe par la conception de soi et des autres en tant que membres de catégories sociales, et par l'attribution aux individus des caractéristiques prototypiques de ces catégories. Il s'agit donc d'une théorie de l'individu qui est censée expliquer des phénomènes collectifs. Les situations dans lesquelles un grand nombre d'individus interagissent de manière non triviale génèrent typiquement des comportements collectifs complexes qui sont difficiles à prévoir sur la base des comportements individuels. La simulation informatique de tels systèmes est un moyen fiable d'explorer de manière systématique la dynamique du comportement collectif en fonction des spécifications individuelles. Dans cette thèse, nous présentons un modèle formel d'une partie de la théorie de l'autocatégorisation appelée principe du métacontraste. À partir de la distribution d'un ensemble d'individus sur une ou plusieurs dimensions comparatives, le modèle génère les catégories et les prototypes associés. Nous montrons que le modèle se comporte de manière cohérente par rapport à la théorie et est capable de répliquer des données expérimentales concernant divers phénomènes de groupe, dont par exemple la polarisation. De plus, il permet de décrire systématiquement les prédictions de la théorie dont il dérive, notamment dans des situations nouvelles. Au niveau collectif, plusieurs dynamiques peuvent être observées, dont la convergence vers le consensus, vers une fragmentation ou vers l'émergence d'attitudes extrêmes. Nous étudions également l'effet du réseau social sur la dynamique et montrons qu'à l'exception de la vitesse de convergence, qui augmente lorsque les distances moyennes du réseau diminuent, les types de convergences dépendent peu du réseau choisi. Nous constatons d'autre part que les individus qui se situent à la frontière des groupes (dans le réseau social ou spatialement) ont une influence déterminante sur l'issue de la dynamique. Le modèle peut par ailleurs être utilisé comme un algorithme de classification automatique. Il identifie des prototypes autour desquels sont construits des groupes. Les prototypes sont positionnés de sorte à accentuer les caractéristiques typiques des groupes, et ne sont pas forcément centraux. Enfin, si l'on considère l'ensemble des pixels d'une image comme des individus dans un espace de couleur tridimensionnel, le modèle fournit un filtre qui permet d'atténuer du bruit, d'aider à la détection d'objets et de simuler des biais de perception comme l'induction chromatique. Abstract Self-categorization theory is a social psychology theory dealing with the relation between the individual and the group. It explains group behaviour through self- and others' conception as members of social categories, and through the attribution of the proto-typical categories' characteristics to the individuals. Hence, it is a theory of the individual that intends to explain collective phenomena. Situations involving a large number of non-trivially interacting individuals typically generate complex collective behaviours, which are difficult to anticipate on the basis of individual behaviour. Computer simulation of such systems is a reliable way of systematically exploring the dynamics of the collective behaviour depending on individual specifications. In this thesis, we present a formal model of a part of self-categorization theory named metacontrast principle. Given the distribution of a set of individuals on one or several comparison dimensions, the model generates categories and their associated prototypes. We show that the model behaves coherently with respect to the theory and is able to replicate experimental data concerning various group phenomena, for example polarization. Moreover, it allows to systematically describe the predictions of the theory from which it is derived, specially in unencountered situations. At the collective level, several dynamics can be observed, among which convergence towards consensus, towards frag-mentation or towards the emergence of extreme attitudes. We also study the effect of the social network on the dynamics and show that, except for the convergence speed which raises as the mean distances on the network decrease, the observed convergence types do not depend much on the chosen network. We further note that individuals located at the border of the groups (whether in the social network or spatially) have a decisive influence on the dynamics' issue. In addition, the model can be used as an automatic classification algorithm. It identifies prototypes around which groups are built. Prototypes are positioned such as to accentuate groups' typical characteristics and are not necessarily central. Finally, if we consider the set of pixels of an image as individuals in a three-dimensional color space, the model provides a filter that allows to lessen noise, to help detecting objects and to simulate perception biases such as chromatic induction.
Resumo:
The geometric characterisation of tree orchards is a high-precision activity comprising the accurate measurement and knowledge of the geometry and structure of the trees. Different types of sensors can be used to perform this characterisation. In this work a terrestrial LIDAR sensor (SICK LMS200) whose emission source was a 905-nm pulsed laser diode was used. Given the known dimensions of the laser beam cross-section (with diameters ranging from 12 mm at the point of emission to 47.2 mm at a distance of 8 m), and the known dimensions of the elements that make up the crops under study (flowers, leaves, fruits, branches, trunks), it was anticipated that, for much of the time, the laser beam would only partially hit a foreground target/object, with the consequent problem of mixed pixels or edge effects. Understanding what happens in such situations was the principal objective of this work. With this in mind, a series of tests were set up to determine the geometry of the emitted beam and to determine the response of the sensor to different beam blockage scenarios. The main conclusions that were drawn from the results obtained were: (i) in a partial beam blockage scenario, the distance value given by the sensor depends more on the blocked radiant power than on the blocked surface area; (ii) there is an area that influences the measurements obtained that is dependent on the percentage of blockage and which ranges from 1.5 to 2.5 m with respect to the foreground target/object. If the laser beam impacts on a second target/object located within this range, this will affect the measurement given by the sensor. To interpret the information obtained from the point clouds provided by the LIDAR sensors, such as the volume occupied and the enclosing area, it is necessary to know the resolution and the process for obtaining this mesh of points and also to be aware of the problem associated with mixed pixels.
Resumo:
Objetivou-se, com o trabalho, avaliar dois métodos de estimativa da área foliar, em plantas de laranja "Pêra", pela análise da imagem digital obtida com scanner e câmera fotográfica digital. Para determinar a área das folhas, um grupo de discos foi colocado sobre um leitor de scanner, sendo que a imagem obtida foi armazenada. Os mesmos grupos de discos foram fixados sobre cartolina branca e fotografados com câmera fotográfica digital. As imagens obtidas da câmera fotográfica e do scanner foram processadas utilizando ferramentas de um editor de imagem que permite a contagem de pixels de determinada cor, no caso verde. Para a comparação dos métodos, os discos foram submetidos a integrador óptico de área foliar modelo LICOR-3100, utilizando os mesmos agrupamentos. Foram coletadas 20 folhas (cinco em cada quadrante da planta) por parcela de um experimento para comparação de fertilizantes comerciais e doses de zinco, aplicados via foliar, em plantas de sete anos de idade. O experimento foi composto de sete tratamentos e quatro repetições, num total de 28 parcelas. Os dois métodos apresentaram alta correlação com a área estimada pelo integrador óptico de área, considerado como método de referência. O método da análise da imagem obtida com câmera fotográfica, na resolução de 5.0 megapixel, foi mais precisa quando comparada à área estimada pelo integrador óptico de área.
Resumo:
This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates.
Resumo:
The purpose of this thesis is to present a new approach to the lossy compression of multispectral images. Proposed algorithm is based on combination of quantization and clustering. Clustering was investigated for compression of the spatial dimension and the vector quantization was applied for spectral dimension compression. Presenting algo¬rithms proposes to compress multispectral images in two stages. During the first stage we define the classes' etalons, another words to each uniform areas are located inside the image the number of class is given. And if there are the pixels are not yet assigned to some of the clusters then it doing during the second; pass and assign to the closest eta¬lons. Finally a compressed image is represented with a flat index image pointing to a codebook with etalons. The decompression stage is instant too. The proposed method described in this paper has been tested on different satellite multispectral images from different resources. The numerical results and illustrative examples of the method are represented too.
Resumo:
Tämän diplomityön tavoitteena oli tutkia kohinan poistoa spektrikuvista käyttäen pehmeitä morfologisia suodattimia. Työssä painotettiin impulssimaisen kohinan suodattamista. Suodattimien toimintaa arvioitiin numeerisesti keskimääräisen itseisarvovirheen, neliövirheen sekä signaali-kohinasuhteen avulla ja visuaalisesti tarkastelemalla suodatettuja kuvia sekä niiden yksittäisiä spektritasoja. Käytettyjä suodatusmenetelmiä olivat suodatus kuvapisteittäin spektrin suunnassa, suodatus koko spektrissä sekä kuutiomenetelmä ja komponenteittainen suodatus. Suodatettavat kuvat sisälsivät joko suola ja pippuri- tai bittivirhekohinaa. Parhaimmat suodatustulokset sekä numeeristen virhekriteerien että visuaalisen tarkastelun perusteella saatiin komponenteittaisella sekä kuvapisteittäisellä menetelmällä. Työssä käytetyt menetelmät on esitetty algoritmimuodossa. Suodatinalgoritmien toteutukset ja suodatuskokeet tehtiin Matlab-ohjelmistolla.
Resumo:
Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.
Resumo:
Three different pixels based on single-photon avalanche diodes for triggered applications, such as fluorescence lifetime measurements and high energy physics experiments, are presented. Each pixel consists of a 20µm x 100µm (width x length) single photon avalanche diode and a monolithically integrated readout circuit. The sensors are operated in the gated mode of acquisition to reduce the probability to detect noise counts interferring with real radiation events. Each pixel includes a different readout circuit that allows to use low reverse bias overvoltages. Experimental results demonstrate that the three pixels present a similar behaviour. The pixels get rid of afterpulses and present a reduced dark count probability by applying the gated operation. Noise figures are further improved by using low reverse bias overvoltages. The detectors exhibit an input dynamic range of 13.35 bits with short gated"on" periods of 10ns and a reverse bias overvoltage of 0.5V. The three pixels have been fabricated in a standard HV-CMOS process.