778 resultados para Pitch


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Published also as thesis (PH. D.) Columbia University, 1922.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover title.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obstructive sleep apnea (OSA) is a highly prevalent disease in which upper airways are collapsed during sleep, leading to serious consequences. The gold standard of diagnosis, called polysomnography (PSG), requires a full-night hospital stay connected to over ten channels of measurements requiring physical contact with sensors. PSG is inconvenient, expensive and unsuited for community screening. Snoring is the earliest symptom of OSA, but its potential in clinical diagnosis is not fully recognized yet. Diagnostic systems intent on using snore-related sounds (SRS) face the tough problem of how to define a snore. In this paper, we present a working definition of a snore, and propose algorithms to segment SRS into classes of pure breathing, silence and voiced/unvoiced snores. We propose a novel feature termed the 'intra-snore-pitch-jump' (ISPJ) to diagnose OSA. Working on clinical data, we show that ISPJ delivers OSA detection sensitivities of 86-100% while holding specificity at 50-80%. These numbers indicate that snore sounds and the ISPJ have the potential to be good candidates for a take-home device for OSA screening. Snore sounds have the significant advantage in that they can be conveniently acquired with low-cost non-contact equipment. The segmentation results presented in this paper have been derived using data from eight patients as the training set and another eight patients as the testing set. ISPJ-based OSA detection results have been derived using training data from 16 subjects and testing data from 29 subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mistuning a harmonic produces an exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that causes the other harmonics (constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (nominal F0 frequency = 200 Hz) was mistuned by +8% and -8%. The pitch-shift gradient was defined as the difference between these values and its magnitude was used as a measure of frame integration. An independent and random perturbation (spectral jitter) was applied simultaneously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to ±40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient, but more distant components also contributed. The stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binaural pitches are auditory percepts that emerge from combined inputs to the ears but that cannot be heard if the stimulus is presented to either ear alone. Here, we describe a binaural pitch that is not easily accommodated within current models of binaural processing. Convergent magnetoencephalography (MEG) and psychophysical measurements were used to characterize the pitch, heard when band-limited noise had a rapidly changing interaural phase difference. Several interesting features emerged: First, the pitch was perceptually lateralized, in agreement with the lateralization of the evoked changes in MEG spectral power, and its salience depended on dichotic binaural presentation. Second, the frequency of the pure tone that matched the binaural pitch lay within a lower spectral sideband of the phase-modulated noise and followed the frequency of that sideband when the modulation frequency or center frequency and bandwidth of the noise changed. Thus, the binaural pitch depended on the processing of binaural information in that lower sideband.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mistuning a harmonic produces an exaggerated change in its pitch, a component-pitch shift. The origin of these pitch shifts was explored by manipulations intended to alter the grouping status of a mistuned target component in a periodic complex tone. In experiment 1, which used diotic presentation, reinstating the corresponding harmonic (in-tune counterpart) caused the pitch shifts on the mistuned target largely to disappear for components 3 and 4, although they remained for component 2. A computational model of component-pitch shifts, based on harmonic cancellation, was unable to explain the near-complete loss of pitch shifts when the counterpart was present; only small changes occurred. In experiment 2, the complex tone and mistuned component 4 were presented in the left ear and the in-tune counterpart was presented in the right. The in-tune counterpart again reduced component-pitch shifts, but they were restored when a captor complex into which the counterpart fitted as harmonic 3 was added in the right ear; presumably by providing an alternative grouping possibility for the counterpart. It is proposed that component-pitch shifts occur only if the mistuned component is selected to contribute to the complex-tone percept; these shifts are eliminated if it is displaced by a better candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first use of a multicore fibre incorporating fibre Bragg grating strain sensors in each core as a fibre optic pitch and roll sensor. A length of four-core fibre supported at one end forms a cantilever. The differential strains between opposite grating pairs depend on the fibre’s orientation in pitch (in the vertical plane) and roll (azimuth) with respect to gravity. Resolutions of ±2◦ in roll and ±15◦ in pitch were measured.