844 resultados para Piston-driven expansion tubes
Resumo:
We present experimental results for the dynamics of cold atoms in a far detuned amplitude-modulated optical standing wave. Phase-space resonances constitute distinct peaks in the atomic momentum distribution containing up to 65% of all atoms resulting from a mixed quantum chaotic phase space. We characterize the atomic behavior in classical and quantum regimes and we present the applicable quantum and classical theory, which we have developed and refined. We show experimental proof that the size and the position of the resonances in phase space can be controlled by varying several parameters, such as the modulation frequency, the scaled well depth, the modulation amplitude, and the scaled Planck’s constant of the system. We have found a surprising stability against amplitude noise. We present methods to accurately control the momentum of an ensemble of atoms using these phase-space resonances which could be used for efficient phase-space state preparation.
Resumo:
Rupture of a light cellophane diaphragm in an expansion tube has been studied by an optical method. The influence of the light diaphragm on test flow generation has long been recognised, however the diaphragm rupture mechanism is less well known. It has been previously postulated that the diaphragm ruptures around its periphery due to the dynamic pressure loading of the shock wave, with the diaphragm material at some stage being removed from the flow to allow the shock to accelerate to the measured speeds downstream. The images obtained in this series of experiments are the first to show the mechanism of diaphragm rupture and mass removal in an expansion tube. A light diaphragm was impulsively loaded via a shock wave and a series of images was recorded holographically throughout the rupture process, showing gradual destruction of the diaphragm. Features such as the diaphragm material, the interface between gases, and a reflected shock were clearly visualised. Both qualitative and quantitative aspects of the rupture dynamics were derived from the images and compared with existing one-dimensional theory.
Resumo:
The quantum trajectories method is illustrated for the resonance fluorescence of a two-level atom driven by a multichromatic field. We discuss the method for the time evolution of the fluorescence intensity in the presence of bichromatic and trichromatic driving fields. We consider the special case wherein one multichromatic field component is strong and resonant with the atomic transition whereas the other components are much weaker and arbitrarily detuned from the atomic resonance. We find that the phase-dependent modulations of the Rabi oscillations, recently observed experimentally [Q. Wu, D. J. Gauthier, and T. W. Mossberg, Phys. Rev. A 49, R1519 (1994)] for the special case when the weaker component of a bichromatic driving field is detuned from the atomic resonance by the strong-field Rabi frequency, appear also for detunings close to the subharmonics of the Rabi frequency. Furthermore, we show that for the atom initially prepared in one of the dressed states of the strong field component the modulations are not sensitive to the phase. We extend the calculations to the case of a trichromatic driving field and find that apart from the modulations of the amplitude there is a modulation of the frequency of the Rabi oscillations. Moreover, the time evolution of the fluorescence intensity depends on the phase regardless of the initial conditions and a phase-dependent suppression of the Rabi oscillations can be observed when the sideband fields are tuned to the subharmonics of the strong-field Rabi frequency. [S1050-2947(98)03501-X].
Resumo:
This paper describes U2DE, a finite-volume code that numerically solves the Euler equations. The code was used to perform multi-dimensional simulations of the gradual opening of a primary diaphragm in a shock tube. From the simulations, the speed of the developing shock wave was recorded and compared with other estimates. The ability of U2DE to compute shock speed was confirmed by comparing numerical results with the analytic solution for an ideal shock tube. For high initial pressure ratios across the diaphragm, previous experiments have shown that the measured shock speed can exceed the shock speed predicted by one-dimensional models. The shock speeds computed with the present multi-dimensional simulation were higher than those estimated by previous one-dimensional models and, thus, were closer to the experimental measurements. This indicates that multi-dimensional flow effects were partly responsible for the relatively high shock speeds measured in the experiments.
Resumo:
We report on the experimental observation of the generalized synchronization of chaos in a real physical system. We show that under a nonlinear resonant interaction, the chaotic dynamics of a single mode laser can become functionally related to that of a chaotic driving signal and furthermore as the coupling strength is further increased, the chaotic dynamics of the laser approaches that of the driving signal.
Resumo:
A common mechanism for chromosomal fragile site genesis is not yet apparent. Folate-sensitive fragile sites are expanded p(CCG)n repeats that arise from longer normal alleles. Distamycin A or bromodeoxyuridine-inducible fragile site FRA16B is an expanded AT-rich similar to 33 bp repeat; however, the relationship between normal and fragile site alleles is not known. Here, we report that bromodeoxyuridine-inducible, distamycin A-insensitive fragile site FRA10B is composed of expanded similar to 42 bp repeats. Differences in repeat motif length or composition between different FRA10B families indicate multiple independent expansion events. Some FRA10B alleles comprise a mixture of different expanded repeat motifs. FRA10B fragile site and long normal alleles share flanking polymorphisms. Somatic and intergenerational FRA10B repeat instability analogous to that found in expanded trinucleotide repeats supports dynamic mutation as a common mechanism for repeat expansion.
Resumo:
In a recent paper Meyer and Yeoman [Phys. Rev. Lett. 79, 2650 (1997)] have shown that the resonance fluorescence from two atoms placed in a cavity and driven by an incoherent field can produce an interference pattern with a dark center. We study the fluorescence from two coherently driven atoms in free space and show that this system can also produce an interference pattern with a dark center. This happens when the atoms are in nonequivalent positions in the driving: field, i.e., the atoms experience different intensities and phases of the driving field. We discuss the role of the interatomic interactions in this process and find that the interference pattern with a dark center results from the participation of the antisymmetric state in the dynamics of the driven two-atom system.
Resumo:
We study the behavior of a two-level atom that is driven by a bichromatic field consisting of a strong resonant component and a weaker tunable component. In addition to the splitting of the energy levels (the multiphoton AC Stark effect), we find that the weaker component also shifts the subharmonic resonances, an effect we attribute to a dynamic Stark shift. When the weaker component is tuned to a shifted resonance, no fluorescence occurs at either the frequency of the strong component or the three-photon mixing frequency. Results are obtained with numerical techniques and explained in terms of the dressed-atom model of the system. (C) 1998 Optical Society of America [S0740-3224(98)01508-2] OCIS codes: 270.4180, 270.6620, 270.0270.
Resumo:
We study the interaction of a two-level atom with two lasers of different frequencies and amplitudes: a strong laser of Rabi frequency 2 Ohm(1) on resonance with the atomic transition, and a weaker laser detuned by subharmonics (2 Ohm(1)/n) of the Rabi frequency of the first. We find that under these conditions the second laser couples the dressed states created by the first in an n-photon process, resulting in doubly dressed states and in a ''multiphoton ac Stark'' effect. We calculate the eigenstates of the doubly dressed atom and their energies, and illustrate the role of this multiphoton ac Stark effect in its fluorescence, absorption, and Autler-Townes spectra. [S1050-2947(98)07607-0].
Resumo:
We study the resonance fluorescence from two interacting atoms driven by a squeezed vacuum field and show that this system produces an interference pattern with a dark center. We discuss the role of the interatomic interactions in this process and find that the interference pattern results from an unequal population of the symmetric and antisymmetric states of the two-atom system. We also identify intrinsically nonclassical effects versus classical squeezed field effects, (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
We present numerical and analytical results for the Mollow probe absorption spectrum of a coherently driven two-level system in a narrow bandwidth squeezed vacuum field. The spectra are calculated for the case where the Rabi frequency of the driving field is much larger than the natural linewidth and the squeezed vacuum carrier frequency is detuned from the driving laser frequency. The driving laser is on resonance. We show that in a detuned squeezed vacuum the standard Mellow features are each split into triplets. The central components of each triplet are weakly dependent on the squeezing phase but the sidebands strongly depend on the phase and can have dispersive or absorptive/emissive profiles. We also derive approximate analytical expressions for the spectral features and find that the multi-peak structure of the spectrum can be interpreted either via the eigenfrequencies of a generalized Floquet Hamiltonian or in terms of three-photon transitions between dressed stales involving a probe field photon and a correlated photon pair from the squeezed vacuum field.
Resumo:
Recent reports have shown neurodegenerative disorders to be associated with abnormal expansions of a CAG trinucleotide repeat allele at various autosomal loci. While normal chromosomes have 14 to 44 repeats, disease chromosomes may have 60 to 84 repeats. The number of CAG repeats on mutant chromosomes correlates with increasing severity of disease or decreasing age at onset of symptoms. Since we are interested in identifying the many quantitative trait loci (QTL) influencing brain functioning, we examined the possibility that the number of CAG repeats in the normal size range at these loci are relevant to "normal" neural functioning. We have used 150 pairs of adolescent (aged 16 years) twins and their parents to examine allele size at the MJD, SCA1, and DRPLA loci in heterozygous normal individuals. These are part of a large ongoing project using cognitive and physiological measures to investigate the genetie influences on cognition, and an extensive protocol of tests is employed to assess some of the key components of intellectual functioning. This study selected to examine full-scale psychometric IQ (FSIQ) and a measure of information processing (choice reaction time) and working memory (slow wave amplitude). CAG repeat size was determined on an ABI Genescan system following multiplex PCR amplification. Quantitative genetic analyses were performed to determine QTL effects of MJD, SCA1, and DRPLA on cognitive functioning. Analyses are in progress and will be discussed.
Resumo:
Obstruction of the fetal trachea is a potent stimulus for fetal lung growth and may have therapeutic potential in human fetuses with lung hypoplasia. However, the effects of increased lung expansion on lung development near midgestation, which is the preferred timing for fetal intervention, have not been well studied. Our aim was to determine the effects of increased lung expansion on lung development at 75-90 d of gestation in fetal sheep. In three groups of fetuses (n = 4 for each), the trachea was occluded for either 10 [10-d tracheal occlusion (TO) group] or 15 d (15-d TO group) or left intact (control fetuses). TO for both 10 and 15 d caused fetal hydrops, resulting in significantly increased fetal body weights. Both periods of TO significantly increased total lung DNA contents from 99.8 +/- 10.1 to 246.0 +/- 5.3 and 246.9 +/- 48.7 mg in 10- and 15-d TO fetuses, respectively. TO for 10 and 15 d also increased airspace diameter, although the percentage of lung occupied by airspace was not increased in 10-d TO fetuses due to large increases in interairway distances; this resulted from a large increase in mesenchymal tissue. The interairway distances at 15 d of TO were reduced compared with the 10-d value but were still similar to 30% larger than control values. We conclude that TO at
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.