964 resultados para Piecewise Polynomial Approximation
Resumo:
Los materiales lignocelulósicos residuales de las actividades agroindustriales pueden ser aprovechados como fuente de lignina, hemicelulosa y celulosa. El tratamiento químico del material lignocelulósico se debe enfrentar al hecho de que dicho material es bastante recalcitrante a tal ataque, fundamentalmente debido a la presencia del polímero lignina. Esto se puede lograr también utilizando hongos de la podredumbre blanca de la madera. Estos producen enzimas lignolíticas extracelulares fundamentalmente Lacasa, que oxida la lignina a CO2. Tambien oxida un amplio rango de sustratos ( fenoles, polifenoles, anilinas, aril-diaminas, fenoles metoxi-sustituídos, y otros), lo cual es una buena razón de su atracción para aplicaciones biotecnológicas. La enzima tiene potencial aplicación en procesos tales como en la delignificación de materiales lignocelulósicos y en el bioblanqueado de pulpas para papel, en el tratamiento de aguas residuales de plantas industriales, en la modificación de fibras y decoloración en industrias textiles y de colorantes, en el mejoramiento de alimentos para animales, en la detoxificación de polutantes y en bioremediación de suelos contaminados. También se la ha utilizado en Q.Orgánica para la oxidación de grupos funcionales, en la formación de enlaces carbono- nitrógeno y en la síntesis de productos naturales complejos. HIPOTESIS: Los hongos de podredumbre blanca, y en condiciones óptimas de cultivo producen distintos tipos de enzimas oxidasas, siendo las lacasas las más adecuadas para explorarlas como catalizadores en los siguientes procesos: Delignificación de residuos de la industria forestal con el fin de aprovechar tales desechos en la alimentación animal. Decontaminación/remediación de suelos y/o efluentes industriales. Se realizarán los estudios para el diseño de bio-reactores que permitan responder a las dos cuestiones planteadas en la hipótesis. Para el proceso de delignificación de material lignocelulósico se proponen dos estrategias: 1- tratar el material con el micelio del hongo adecuando la provisión de nutrientes para un desarrollo sostenido y favorecer la liberación de la enzima. 2- Utilizar la enzima lacasa parcialmente purificada acoplada a un sistema mediador para oxidar los compuestos polifenólicos. Para el proceso de decontaminación/remediación de suelos y/o efluentes industriales se trabajará también en dos frentes: 3) por un lado, se ha descripto que existe una correlación positiva entre la actividad de algunas enzimas presentes en el suelo y la fertilidad. En este sentido se conoce que un sistema enzimático, tentativamente identificado como una lacasa de origen microbiano es responsable de la transformación de compuestos orgánicos en el suelo. La enzima protege al suelo de la acumulación de compuestos orgánicos peligrosos catalizando reacciones que involucran degradación, polimerización e incorporación a complejos del ácido húmico. Se utilizarán suelos incorporados con distintos polutantes(por ej. policlorofenoles ó cloroanilinas.) 4) Se trabajará con efluentes industriales contaminantes (alpechínes y/o el efluente líquido del proceso de desamargado de las aceitunas). The lignocellulosic raw materials of the agroindustrial activities can be taken advantage as source of lignin, hemicellulose and cellulose. The chemical treatment of this material is not easy because the above mentioned material is recalcitrant enough to such an assault, due to the presence of the lignin. This can be achieved also using the white-rot fungi of the wood. It produces extracellular ligninolitic enzymes, fundamentally Laccase, which oxidizes the lignin to CO2. The enzyme has application in such processes as in the delignification of lignocellulosic materials and in the biobleaching of fibers for paper industry, in the treatment of waste water of industrial plants, in the discoloration in textile industries, in the improvement of food for ruminants, in the detoxification of polutants and in bioremediation of contaminated soils. HYPOTHESIS: The white-rot fungi produce different types of enzymes, being the laccases the most adapted to explore them as catalysts in the following processes: Delignification of residues of the forest industry in order to take advantage of such waste in the animal feed. Decontamination of soils and / or waste waters. The studies will be conducted for the design of bio reactors that allow to answer to both questions raised in the hypothesis. For the delignification process of lignocellulosic material they propose two strategies: 1- to treat the material with the fungi 2-to use the partially purified enzyme to oxidize the polyphenolic compounds. For the soil and/or waste water decontamination process, we have: 3- Is know that the enzyme protects to the soil of the accumulation of organic dangerous compounds catalyzing reactions that involve degradation, polymerization and incorporation to complexes of the humic acid. There will be use soils incorporated into different pollutants. 4- We will work with waste waters (alpechins or the green olive debittering effluents.
Resumo:
Navier-Stokes-Gleichungen, Gleitrandbedingung, Konvektions-Diffusions-Gleichung, Finite-Elemente-Methode, Mehrgitterverfahren, Fehlerabschätzung, Iterative Entkopplung
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
We say the endomorphism problem is solvable for an element W in a free group F if it can be decided effectively whether, given U in F, there is an endomorphism Φ of F sending W to U. This work analyzes an approach due to C. Edmunds and improved by C. Sims. Here we prove that the approach provides an efficient algorithm for solving the endomorphism problem when W is a two- generator word. We show that when W is a two-generator word this algorithm solves the problem in time polynomial in the length of U. This result gives a polynomial-time algorithm for solving, in free groups, two-variable equations in which all the variables occur on one side of the equality and all the constants on the other side.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we study basic properties of the weighted Hardy space for the unit disc with the weight function satisfying Muckenhoupt's (Aq) condition, and study related approximation problems (expansion, moment and interpolation) with respect to two incomplete systems of holomorphic functions in this space.
Resumo:
In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.
Resumo:
In this note we quantify to what extent indirect taxation influences and distorts prices. To do so we use the networked accounting structure of the most recent input-output table of Catalonia, an autonomous region of Spain, to model price formation. The role of indirect taxation is considered both from a classical value perspective and a more neoclassical flavoured one. We show that they would yield equivalent results under some basic premises. The neoclassical perspective, however, offers a bit more flexibility to distinguish among different tax figures and hence provide a clearer disaggregate picture of how an indirect tax ends up affecting, and by how much, the cost structure.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la School of Mathematics and Statistics de la University of Plymouth, United Kingdom, entre abril juliol del 2007.Aquesta investigació és encara oberta i la memòria que presento constitueix un informe de la recerca que estem duent a terme actualment. En aquesta nota estudiem els centres isòcrons dels sistemes Hamiltonians analítics, parant especial atenció en el cas polinomial. Ens centrem en els anomenats quadratic-like Hamiltonian systems. Diverses propietats dels centres isòcrons d'aquest tipus de sistemes van ser donades a [A. Cima, F. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Di®erential Equations 157 (1999) 373{413]. Aquell article estava centrat principalment en el cas en que A; B i C fossin funcions analítiques. El nostre objectiu amb l'estudi que estem duent a terme és investigar el cas en el que aquestes funcions són polinomis. En aquesta nota formulem una conjectura concreta sobre les propietats algebraiques que venen forçades per la isocronia del centre i provem alguns resultats parcials.
Resumo:
Less is known about social welfare objectives when it is costly to change prices, as in Rotemberg (1982), compared with Calvo-type models. We derive a quadratic approximate welfare function around a distorted steady state for the costly price adjustment model. We highlight the similarities and differences to the Calvo setup. Both models imply inflation and output stabilization goals. It is explained why the degree of distortion in the economy influences inflation aversion in the Rotemberg framework in a way that differs from the Calvo setup.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We explore the relationship between polynomial functors and trees. In the first part we characterise trees as certain polynomial functors and obtain a completely formal but at the same time conceptual and explicit construction of two categories of rooted trees, whose main properties we describe in terms of some factorisation systems. The second category is the category Ω of Moerdijk and Weiss. Although the constructions are motivated and explained in terms of polynomial functors, they all amount to elementary manipulations with finite sets. Included in Part 1 is also an explicit construction of the free monad on a polynomial endofunctor, given in terms of trees. In the second part we describe polynomial endofunctors and monads as structures built from trees, characterising the images of several nerve functors from polynomial endofunctors and monads into presheaves on categories of trees. Polynomial endofunctors and monads over a base are characterised by a sheaf condition on categories of decorated trees. In the absolute case, one further condition is needed, a projectivity condition, which serves also to characterise polynomial endofunctors and monads among (coloured) collections and operads.
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).