1000 resultados para Phytoplankton growth


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increases in ultraviolet radiation (UVR) and CO2 affect phytoplankton growth and mortality in a variety of different ways. However, in situ responses of natural phytoplankton communities to climate change, as well as its effects on phytoplankton annual cycles, are still largely unknown. Although temperature and UVR have been increasing in temperate latitudes during winter, this season is still particularly neglected in climate change studies, being considered a non-active season regarding phytoplankton growth and production. Additionally, coastal lagoons are highly productive ecosystems and very vulnerable to climate change. This study aims, therefore, to evaluate the short-term effects of increased UVR and CO2 on the composition and growth of winter phytoplankton assemblages in a temperate coastal lagoon. During winter 2012, microcosm experiments were used to evaluate the isolated and combined effects of UVR and CO2, under ambient and high CO2 treatments, exposed to ambient UV levels and photosynthetically active radiation (PAR), or to PAR only. Phytoplankton composition, abundance, biomass and photosynthetic parameters were evaluated during the experiments. Significant changes were observed in the growth of specific phytoplankton groups, leading to changes in community composition. The cyanobacterium Synechococcus was dominant at the beginning of the experiment, but it was negatively affected by UVR and CO2. Diatoms clearly benefited from high CO2 and UVR, particularly Thalassiosira. Despite the changes observed in specific phytoplankton groups, growth and production of the whole phytoplankton community did not show significant responses to UVR and/or CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fate of N-15-nitrogen-enriched formulated feed fed to shrimp was traced through the food web in shallow, outdoor tank systems (1000 1) stocked with shrimp. Triplicate tanks containing shrimp water with and without sediment were used to identify the role of the natural biota in the water column and sediment in processing dietary nitrogen (N). A preliminary experiment demonstrated that N-15-nitrogen-enriched feed products could be detected in the food web. Based on this, a 15-day experiment was conducted. The ammonium (NH4+) pool in the water column became rapidly enriched (within one day) with N-15-nitrogen after shrimp were fed N-15-enriched feed. By day 15, 6% of the added N-15-nitrogen was in this fraction in the 'sediment' tanks compared with 0.4% in the 'no sediment' tanks. The particulate fraction in the water column, principally autotrophic nanoflagellates, accounted for 4-5% of the N-15-nitrogen fed to shrimp after one day. This increased to 16% in the 'no sediment' treatment, and decreased to 2% in the 'sediment' treatment by day 15. It appears that dietary N was more accessible to the phytoplankton community in the absence of sediment. The difference is possibly because a proportion of the dietary N was buried in the sediment in the 'sediment' treatment, making it unavailable to the phytoplankton. Alternatively, the dietary N was retained in the NH4+ pool in the water column since phytoplankton growth, and hence, N utilization was lower in the 'sediment' treatment. The lower growth of phytoplankton in the 'sediment' treatment appeared to be related to higher turbidity, and hence, lower light availability for growth. The percentage N-15-nitrogen detected in the sediment was only 6% despite the high capacity for sedimentation of the large biomass of plankton detritus and shrimp waste. This suggests rapid remineralization of organic waste by the microbial community in the sediment resulting in diffusion of inorganic N sources into the water column. It is likely that most of the dietary N will ultimately be removed from the tank system by water discharges. Our study showed that N-15-nitrogen derived from aquaculture feed can be processed by the microbial community in outdoor aquaculture systems and provides a method for determining the effect of dietary N on ecosystems. However, a significant amount of the dietary N was not retained by the natural biota and is likely to be present in the soluble organic fraction. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de Doutoramento, Física, 17 de Dezembro de 2013, Universidade dos Açores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los resultados de investigación sobre producción primaria dentro del alcance interdisciplinario del ambiente marino frente a la costa peruana incluyen estudios nacionales, extranjeros y de investigación conjunta a través de proyectos internacionales (1960-2000). La circulación en la costa peruana es dominada por una corriente hacia el ecuador en una capa de 20 a 50 m. La estructura de plumas del afloramiento se presenta en cada área y podría ser la clave para el desarrollo de cadenas cortas y productivas: fitoplancton peces clupeidos. La distribución de nutrientes sigue la pluma de temperatura, con altos valores en la costa y bajos lejos de la costa; la clorofila muestra mínimos valores cerca de la costa (10 mn) que se incrementa al alejarse. El crecimiento del fitoplancton en aguas peruanas, varía de 0,5 a 0,8 d/d. En aguas recién afloradas el crecimiento es limitado por falta de “condicionamiento biológico” y de compuestos orgánicos (15°S). Estos tipos de agua pueden estar relacionados con las “aguas azules” de altos nutrientes y pobre fitoplancton con células de pequeño tamaño (clorofila <2 μg/L) y con “aguas marrones” con denso fitoplancton, (clorofila >5 μg/L), mayor diversidad y con células de diámetro >5μ. La media de producción primaria fue 3 gC/m2/d (1960-1985), comparable a la mayoría de estudios en los cuales varía entre 3 y 4 gC/m2/d en la franja costera, el último valor es altamente variable en espacio, siendo más frecuente dentro de 10 km. Valores mayores de 12 gC/m2/d se encontraron en el afloramiento de Chimbote. El Niño, La Niña y fases del ENSO, afectan la producción primaria. Las temperaturas bajas originan cambios en la composición química del fitoplancton y reducen el índice de productividad mgC/mgclor-a/d que también es atribuido a limitaciones de luz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study an attempt has been made to understand the microzooplankton community along the easr coast of India. Most of the earlier studies projected Bay of Bengal as an oligotrophic system where phytoplankton growth is limited by a number of factors among which nutrients are the foremost. Hence it is logical to consider that the most of the primary production in the Bay of Bengal could be contributed by small sized phytoplankton harnessing the available resources, which in turn can be utilized effiency by the microzooplankton only. Hence microzooplankton could play in transferring primary organic carbon to higher tropic levels in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Top-down (grazing) and bottom-up (nutrient, light) controls are important in freshwater ecosystems regulation. Relative importance of these factors could change in space and time, but in tropical lakes bottom-up regulation has to been appointed as more influent. Present study aimed to test the hypothesis that phytoplankton growths rate in Armando Ribeiro reservoir, a huge eutrophic reservoir in semi-arid region of Rio Grande do Norte state, is more limited by nutrient available then zooplankton grazing pressure. Bioassay was conduced monthly from September (2008) to August (2009) manipulating two levels of nutrients (with/without addition) and two level of grazers (with/without removal). Experimental design was factorial 2X2 with four treatments (X5), (i) control with water and zooplankton from natural spot ( C ), (ii) with nutrient addition ( +NP ), (iii) with zooplankton remove ( -Z ) and (iv) with zooplankton remove and nutrient addition ( -Z+NP ). For bioassay confection transparent plastic bottles (500ml) was incubate for 4 or 5 days in two different depths, Secchi`s depth (high luminosity) and 3 times Secchi`s depth (low luminosity). Water samples were collected from each bottle in begins and after incubates period for chlorophyll a concentration analysis and zoopalnktonic organisms density. Phytoplankton growths rates were calculated. Bifactorial ANOVA was performance to test if had a significant effect (p<0,005) of nutrient addition and grazers remove as well a significant interaction between factors on phytoplankton growths rates. Effect magnitude was calculated the relative importance of each process. Results show that phytoplankton growth was in generally stimulated by nutrient addition, as while zooplankton remove rarely stimulated phytoplankton growth. Some significant interactions happening between nutrient additions and grazers remove on phytoplankton growth. In conclusion this study suggests that in studied reservoir phytoplankton growth is more controlled by ascendent factors than descendent

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing of pollution in aquatic ecosystems in the last decades has caused an expansion of eutrophication and loss of water quality for human consumption. The increase of frequency and intensity of cyanobacteria blooms have been recognized as a major problem connected to water quality and eutrophication. The knowledge of environmental factors controlling these blooms is a key step towards the management for recovering aquatic ecosystems from eutrophic conditions. Primary productivity in aquatic ecosystems is dependent on light and nutrients availability. In the present work we evaluated the relative importance of the concentration of major nutrients, such as phosphorus and nitrogen, and light for phytoplankton growth in the main water reservoir of Rio Grande do Norte State, named Engenheiro Armando Ribeiro Gonçalves (EARG), which is an eutrophic system, dominated by potentially toxic cyanobacteria populations. Limitation of phytoplankton growth was evaluated through bioassays using differential enrichment of nutrients (N and/or P) under two light conditions (low light and high light) and monthly monitoring of chlorophyll-a and nutrients (total nitrogen and phosphorus) concentrations, and water transparency (Secchi depth) at the pelagic region. Our results confirm that EARG reservoir is an eutrophic system with a low water quality. Results of bioassays on the growth of phytoplankton limitation (N or P) were conflicting with the results predicted by the TN:TP ratios, which indicates that these ratios were not a good indicator of algal growth limitation. Nitrogen was the limiting nutrient, considering both frequency and magnitude. Light and hidrology affected phytoplankton response to nutrient enrichment. The extreme eutrophic conditions of this reservoir, dominated by cyanobacteria blooms, demand urgent managing strategies in order to guarantee the multiple uses for this system, including water supply for human population. Although nitrogen is the limiting nutrient, an effective management program must focus on the reduction of both phosphorus and nitrogen input

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phytoplankton growth is dependent of several abiotic (nutrients, temperature) and biotic (predation by zooplankton) variables. In this work, a mathematical model was developed in Stella software to understand the planktonic dynamics of Extremoz Lagoon (RN) and to simulate scenarios of different environmental conditions. Data were collected monthly at two points of the lagoon. The state variables are phytoplankton and zooplankton and forcing variables are nitrogen, phosphorus and temperature. The results show that: a) the model are well coupled, especially when some constants assume different values; b) simulated nutrient concentrations reduction decreases phytoplankton biomass, but the increase of nutrients does not stimulate the growth; c) changes in the temperature does not change the phytoplankton biomass; d) changes in zooplankton biomass affect directly and reduces the phytoplankton, indicating a topdown control mechanism; e) changes in the nutrient concentration modified the biomass of zooplankton suggesting a rapid flow of energy between nutrients, phytoplankton and zooplankton and a ecosystem likely arranged in an inverted pyramid (higher concentration of zooplankton than phytoplankton)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nutrient criteria as reference concentrations and trophic state boundaries are necessary for water management worldwide because anthropogenic eutrophication is a threat to the water uses. We compiled data on total phosphorus (TP), nitrogen (TN) and chlorophyll a (Chl a) from 17 subtropical reservoirs monitored from 2005-2009 in the Sao Paulo State (Brazil) to calculate reference concentrations through the trisection method (United States Environmental Protection Agency). By dividing our dataset into thirds we presented trophic state boundaries and frequency curves for the nutrient levels in water bodies with different enrichment conditions. TP and TN baseline concentrations (0.010 mg/L and 0.350 mg/L, respectively) were bracketed by ranges for temperate reservoirs available in the literature. We propose trophic state boundaries (upper limits for the oligotrophic category: 0.010 mg TP/L, 0.460 mg TN/L and 1.7 mu g Chl a/L; for the mesotrophic: 0.030 mg TP/L, 0.820 mg TN/L and 9.0 mu g Chl a/L). Through an example with a different dataset (from the Itupararanga Reservoir, Brazil), we encouraged the use of frequency curves to compare data from individual monitoring efforts with the expected concentrations in oligotrophic, mesotrophic and eutrophic regional systems. Such analysis might help designing recovery programs to reach targeted concentrations and mitigate the undesirable eutrophication symptoms in subtropical freshwaters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]Zooplankton play a key role in marine ecosystems and their biogeochemical cycles. They exert control over the primary productivity through the consumption of organic matter and, at the same time, the release of nutrients that sustains the phytoplankton growth. This thesis focuses on the NH+ 4 excretion processes related to these heterotrophic organisms that support, at a global scale, about the 80% of the phytoplankton requirements. However, thereisno clear constant pattern in the zooplankton contribution to theNH+ 4 regeneration throughout thedifferent pelagic ecosystems, so continuousmonitoring of thismetabolic processisessential at widetemporal and spatial scales...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exchange of chemical constituents between ocean and atmosphere provides potentially important feedback mechanisms in the climate system. The aim of this study is to develop and evaluate a chemically coupled global atmosphere-ocean model. For this, an atmosphere-ocean general circulation model with atmospheric chemistry has been expanded to include oceanic biogeochemistry and the process of air-sea gas exchange. The calculation of seawater concentrations in the oceanic biogeochemistry submodel has been expanded from DMS, CO₂

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a three-dimensional physical-biogeochemical model, we have investigated the modeled responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific, and compared the model simulation with in situ (IronEx II) iron fertilization results. In the eastern equatorial Pacific, an area of 540,000 km(2) was enhanced with iron by changing the photosynthetic efficiency and silicate and nitrogen uptake kinetics of phytoplankton in the model for a period of 20 days. The vertically integrated Chl a and primary production increased by about threefold 5 days after the start of the experiment, similar to that observed in the IronEx II experiment. Diatoms contribute to the initial increase of the total phytoplankton biomass, but decrease sharply after 10 days because of mesozooplankton grazing. The modeled surface nutrients (silicate and nitrate) and TCO(2) anomaly fields, obtained from the difference between the "iron addition'' and "ambient'' (without iron) concentrations, also agreed well with the IronEx II observations. The enriched patch is tracked with an inert tracer similar to the SF6 used in the IronEx II. The modeled depth-time distribution of sinking biogenic silica (BSi) indicates that it would take more than 30 days after iron injection to detect any significant BSi export out of the euphotic zone. Sensitivity studies were performed to establish the importance of fertilized patch size, duration of fertilization, and the role of mesozooplankton grazing. A larger size of the iron patch tends to produce a broader extent and longer-lasting phytoplankton blooms. Longer duration prolongs phytoplankton growth, but higher zooplankton grazing pressure prevents significant phytoplankton biomass accumulation. With the same treatment of iron fertilization in the model, lowering mesozooplankton grazing rate generates much stronger diatom bloom, but it is terminated by Si(OH)(4) limitation after the initial rapid increase. Increasing mesozooplankton grazing rate, the diatom increase due to iron addition stays at minimum level, but small phytoplankton tend to increase. The numerical model experiments demonstrate the value of ecosystem modeling for evaluating the detailed interaction between biogeochemical cycle and iron fertilization in the equatorial Pacific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the California Current System the spring transition from poleward to equatorward alongshore wind stress heralds the beginning of upwelling-favorable conditions. The phytoplankton response to this transition is investigated using 8 years ( 1998-2005) of daily, 4-km resolution, Sea-viewing Wide Field of view Sensor ( SeaWiFS) chlorophyll a concentration data. Cluster analysis of the chlorophyll a time series at each location is used to separate the inshore upwelling region from offshore and oligotrophic areas. An objective method for estimating the timing of bloom initiation is used to construct a map of the mean bloom start date. Interannual variability in bloom timing and magnitude is investigated in four regions: 45 degrees N - 50 degrees N, 40 degrees N - 45 degrees N, 35 degrees N - 40 degrees N and 20 degrees N - 35 degrees N. Daily satellite derived wind data ( QuikSCAT) allow the timing of the first episode of persistently upwelling favorable winds to be estimated. Bloom initiation generally coincides with the onset of upwelling winds ( +/- 15 days). South of similar to 35 degrees N, where winds are southward year-round, the timing of increased chlorophyll concentration corresponds closely to timing of the seasonal increase in upwelling intensity. A 1-D model and satellite derived photosynthetically available radiation data are used to estimate time series of depth- averaged irradiance. In the far north of the region (> 46 degrees N) light is shown to limit phytoplankton growth in early spring. In 2005 the spring bloom in the northern regions (> 35 degrees N) had a "false start''. A sharp increase in chl a in February quickly receded, and a sustained increase in biomass was delayed until July. We hypothesize that this resulted in a mismatch in timing of food availability to higher trophic levels.