939 resultados para Physiological and pathological changes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the pattern of cortical degeneration in cases of variant Creutzfeldt-Jakob disease (vCJD), the laminar distribution of the vacuolation ("spongiform change"), surviving neurones, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal lobes. The vacuolation exhibited two common patterns of distribution: either the vacuoles were present throughout the cortex or a bimodal distribution was present with peaks of density in the upper and lower cortical laminae. The distribution of the surviving neurones was highly variable in different regions; the commonest pattern being a uniform distribution with cortical depth. Glial cell nuclei were distributed largely in the lower cortical laminae. The non-florid PrP deposits exhibited either a bimodal distribution or exhibited a peak of density in the upper cortex while the florid deposits were either uniformly distributed down the cortex or were present in the upper cortical laminae. In a significant proportion of areas, the density of the vacuoles was positively correlated with either the surviving neurones or with the glial cell nuclei. These results suggest similarities and differences in the laminar distributions of the pathogenic changes in vCJD compared with cases of sporadic CJD (sCJD). The laminar distribution of vacuoles was more extensive in vCJD than in sCJD whereas the distribution of the glial cell nuclei was similar in the two disorders. In addition, PrP deposits in sCJD were localised mainly in the lower cortical laminae while in vCJD, PrP deposits were either present in all laminae or restricted to the upper cortical laminae. These patterns of laminar distribution suggest that the process of cortical degeneration may be distinctly different in vCJD compared with sCJD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correlations between the clustering patterns of the vacuolation ('spongiform change'), prion protein (PrP) deposits, and surviving neurons were studied in the cerebral cortex, hippocampus, and cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Differences in the sizes of the clusters of vacuoles were observed between brain regions and in the cerebral cortex, between the upper and lower laminae. With the exception of the parietal cortex, mean cluster size of the vacuoles was similar to that of the PrP deposits in each brain area. Clusters of the vacuoles were spatially correlated with the density of surviving neurons and with the clusters of PrP deposits in 47% and 53% of cortical areas analysed respectively but there were few spatial correlation between the PrP deposits and the density of surviving neurons. The data suggest that the pathology of sCJD may spread through the brain via specific anatomical pathways. Development of the clusters of vacuoles is spatially related to surviving neurons while the appearance of clusters of PrP deposits is related to the development of the vacuolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To quantify cortical white matter pathology in variant Creutzfeldt-Jakob disease (vCJD) and to correlate white and grey matter pathologies. Methods: Pathological changes were studied in immunolabeled sections of the frontal, parietal, occipital, and temporal cortex of eleven cases of vCJD. Results: Vacuolation ("spongiform change"), deposition of the disease form of prion protein (PrPsc), and a glial cell reaction were observed in the white matter. The density of the vacuoles was greatest in the white matter of the occipital cortex and glial cell density in the inferior temporal gyrus (ITG). Florid-type PrPsc deposits were present in approximately 50% of white matter regions studied. In the white matter of the frontal cortex (FC), vacuole density was negatively correlated with the densities of both glial cell nuclei and PrPsc deposits. In addition, in the frontal and parietal cortices the densities of glial cells and PrPsc deposits were positively correlated. In the FC and ITG, there was a negative correlation between the densities of the vacuoles in the white matter and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In the FC, vacuole density in the white matter was negatively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI of the adjacent grey matter. In addition, the densities of PrPsc deposits in the white matter of the FC were positively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI and with the number of surviving neurons in laminae V/VI. Conclusion: The data suggest significant degeneration of cortical white matter in vCJD; the vacuolation being related to neuronal loss in the lower cortical laminae of adjacent grey matter, PrPsc deposits the result of leakage from damaged axons, and gliosis a reaction to these changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now recognised that redox control of proteins plays an important role in many signalling pathways both in health and disease. Proteins can undergo a wide variety of oxidative post-translational modifications (oxPTM); while the reversible modifications are thought to be most important in physiological processes, non-reversible oxPTM may contribute to pathological situations and disease. The oxidant is also important in determining the type of oxPTM (chlorination, nitration, etc.), and the susceptibilities of residues vary depending on their structural location. The best characterized oxPTMs involved in signalling modulation are partial oxidations of cysteine to the disulfide, glutathionylated or sulfenic acid forms, but there is increasing evidence that specific oxidations of methionine and tyrosine may have some biological roles. Well understood examples of oxidative regulation include protein tyrosine phosphatases, e.g. PTP1B/C, and members of the MAPK pathways such as MEKK1 and ASK1. Transcription factors such as NFkB and Nrf-2 are also regulated by redox-active cysteines. Improved methods for analysing specific oxPTMs in biological samples are critical for understanding the physiological and pathological roles of these changes, and tandem or MS3 mass spectrometry techniques interfaced with nano-LC separation are being now used. MS3 fragmentation markers for a variety of oxidized residues including tyrosine, tryptophan and proline have been identified, and a precursor ion scanning method that allows the selective identification of these oxPTMs in complex samples has been developed. Such advances in technology offer potential for biomarker development, disease diagnosis and understanding pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity is commonly associated with type 2 diabetes and vascular disease. Changes in body composition in the obese state lead to a dysregulation of secretion of adipocyte-secreted hormones known as adipokines. Adipokines such as leptin and adiponectin are known to be involved in many physiological and pathological processes. Current knowledge suggests that adipokines provide potential therapeutic targets against type 2 diabetes and vascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe. Methods: Changes in density of histological features across cortical gyri were studied in 10 sporadic cases of FTLD-TDP using quantitative methods and polynomial curve fitting. Results: Our data suggest that laminar neuropathology in sporadic FTLD-TDP is highly variable. Most commonly, neuronal cytoplasmic inclusions, dystrophic neurites and vacuolation were abundant in the upper laminae and glial inclusions, neuronal intranuclear inclusions, abnormally enlarged neurones, and glial cell nuclei in the lower laminae. TDP-43-immunoreactive inclusions affected more of the cortical profile in longer duration cases; their distribution varied with disease subtype, but was unrelated to Braak tangle score. Different TDP-43-immunoreactive inclusions were not spatially correlated. Conclusions: Laminar distribution of pathological features in 10 sporadic cases of FTLD-TDP is heterogeneous and may be accounted for, in part, by disease subtype and disease duration. In addition, the feedforward and feedback cortico-cortical connections may be compromised in FTLD-TDP. © 2012 The Authors. Neuropathology and Applied Neurobiology © 2012 British Neuropathological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca2+-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins or γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the Km and the Vmax kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2 -driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of cross-linked proteins correlates with the manifestation of degenerative disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare neurodegenerative disorder associated with parkinsonism, ataxia, and autonomic dysfunction. Its pathology is primarily subcortical comprising vacuolation, neuronal loss, gliosis, and α-synuclein-immunoreactive glial cytoplasmic inclusions (GO). To quantify cerebellar pathology in MSA, the density and spatial pattern of the pathological changes were studied in α-synuclein-immunolabelled sections of the cerebellar hemisphere in 10 MSA and 10 control cases. In MSA, densities of Purkinje cells (PC) were decreased and vacuoles in the granule cell layer (GL) increased compared with controls. In six MSA cases, GCI were present in cerebellar white matter. In the molecular layer (ML) and GL of MSA, vacuoles were clustered, the clusters exhibiting a regular distribution parallel to the edge of the folia. Purkinje cells were randomly or regularly distributed with large gaps between surviving cells. Densities of glial cells and surviving neurons in the ML and surviving cells and vacuoles in the GL were negatively correlated consistent with gliosis and vacuolation in response to neuronal loss. Principal components analysis (PCA) suggested vacuole densities in the ML and vacuole density and cell losses in the GL were the main source of neuropathological variation among cases. The data suggest that: (1) cell losses and vacuolation of the GCL and loss of PC were the most significant pathological changes in the cases studied, (2) pathological changes were topographically distributed, and (3) cerebellar pathology could influence cerebral function in MSA via the cerebello-dentato-thalamic tract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.

microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.

To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.

A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.

Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study seeks to understand how the physiological constraints of diving may change on a daily and seasonal basis. Dive data were obtained from southern elephant seals (Mirounga leonina) from South Georgia using satellite relay data loggers. We analysed the longest (95th percentile) dive durations as proxies for physiological dive limits. A strong, significant relationship existed between the duration of these dives and the time of day and week of year in which they were performed. The depth of the deepest dives also showed a significant, but far less consistent, relationship with local time of day and season. Changes in the duration of the longest dives occurred irrespective of their depth. Dives were longest in the morning (04:00-12:00 h) and shortest in the evening (16:00-00:00 h). The size of the fluctuation varied among animals from 4.0 to 20.0 min. The daily pattern in dive depth was phase-shifted in relation to the diurnal rhythm in dive duration. Dives were deeper at midday and shallower around midnight. Greater daily changes in duration occurred in seals feeding in the open ocean than in those foraging on the continental shelf. The seasonal peak in the duration of the longest dives coincided with austral midwinter. The size of the increase in dive duration from autumn/spring to winter ranged from 11.5 to 30.0 min. Changes in depth of the longest dives were not consistently associated with particular times of year. The substantial diurnal and seasonal fluctuations in maximum dive duration may be a result of changes in the physiological capacity to remain submerged, in addition to temporal changes in the ecological constraints on dive behaviour. We speculate about the role of melatonin as a hormonal mediator of diving capability.