907 resultados para Physical-chemical characteristics
Resumo:
We describe the case of a 28-year-old otherwise healthy woman who presents to our emergency department with nausea for 2 days and severe vomiting for 1 day. She has no history of travel, and her medical history is unremarkable. The physical examination shows a soft and nontender abdomen. Laboratory examinations reveal the presence of significant metabolic alkalosis despite the severe vomiting of the patient. Hypochloremic alkalosis would be expected to be present in this patient. We explain how to correctly identify the rare cause of metabolic acidosis present in this patient using the physicochemical approach (Stewarts approach) for the analysis of human acid-base disorders.
Resumo:
The North Atlantic spring bloom is one of the main events that lead to carbon export to the deep ocean and drive oceanic uptake of CO(2) from the atmosphere. Here we use a suite of physical, bio-optical and chemical measurements made during the 2008 spring bloom to optimize and compare three different models of biological carbon export. The observations are from a Lagrangian float that operated south of Iceland from early April to late June, and were calibrated with ship-based measurements. The simplest model is representative of typical NPZD models used for the North Atlantic, while the most complex model explicitly includes diatoms and the formation of fast sinking diatom aggregates and cysts under silicate limitation. We carried out a variational optimization and error analysis for the biological parameters of all three models, and compared their ability to replicate the observations. The observations were sufficient to constrain most phytoplankton-related model parameters to accuracies of better than 15 %. However, the lack of zooplankton observations leads to large uncertainties in model parameters for grazing. The simulated vertical carbon flux at 100 m depth is similar between models and agrees well with available observations, but at 600 m the simulated flux is larger by a factor of 2.5 to 4.5 for the model with diatom aggregation. While none of the models can be formally rejected based on their misfit with the available observations, the model that includes export by diatom aggregation has a statistically significant better fit to the observations and more accurately represents the mechanisms and timing of carbon export based on observations not included in the optimization. Thus models that accurately simulate the upper 100 m do not necessarily accurately simulate export to deeper depths.
Resumo:
Coal pebbles found in 1994 in the Greham Bell Island (Franz Josef Land Archipelago) are made up of Barzas-type cuticular liptobiolith. The coal belongs to the initial stage of catagenesis and is characterized by high content of cutinite (up to 70%) with very low reflectance (Ro = 0.1%). Maceration products show some tegillate elements of Arthropoda and individual Devonian spores. It is supposed that plant cuticle and Arthropoda exocuticle are present in this coal. Obtained data suggest presence of Paleozoic rocks in the sedimentary sequence, although they are not yet recovered. These data complement available information on distribution of specific Devonian coals and allow to have a new insight into zoogenic material involved in coal formation.
Resumo:
Calcium carbonate precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice, although it is hypothesized that high quantities of dissolved organic matter and/or phosphate (common in sea ice) may inhibit its formation. In this quantitative study of hydrous calcium carbonate as ikaite, sea ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during two expeditions, one in the East Antarctic sector and the other off Terre Adélie. Samples were analysed for CaCO3, salinity, dissolved organic carbon/nitrogen, inorganic phosphate, and total alkalinity. No relationship between these parameters and CaCO3 precipitation was evident. Ikaite was found mostly in the uppermost layers of sea ice with maximum concentrations of up to 126 mg ikaite per litre melted sea ice being measured, although both the temporal and horizontal spatial distributions of ikaite were highly heterogeneous. The precipitate was also found in the snow on top of the sea ice at some of the sampling locations.
Resumo:
The solution rate of biogenic opal in near-surface sediments in the Central Equatorial Pacific is three to eight orders of magnitude lower than similar acid-cleaned samples. Iron, magnesium and calcium aluminosilicates may be the minerals which are forming on the surface of the opal and reducing its solution rate. The scale height of the system studied suggests that diffusive and not advective processes are primarily responsible for the removal of dissolved silica in sediments. Solution budget calculations for this area suggest that 90-99 per cent of the biogenic opal produced in surface waters dissolves before reaching the sediment-water interface; an additional amount dissolves within the sediment and diffuses into bottom waters leaving 0.05-0.15 per cent of the original amount of opal produced by organisms in the sedimentary record. The relative solution potential of the upper 1000 m of the water column varies by more than an order of magnitude from the Antarctic to Equator and may have a pronounced effect on the accumulation rate of biogenic opal in underlying sediments.
Resumo:
Ice cores from outside the Greenland and Antarctic ice sheets are difficult to date because of seasonal melting and multiple sources (terrestrial, marine, biogenic and anthropogenic) of sulfates deposited onto the ice. Here we present a method of volcanic sulfate extraction that relies on fitting sulfate profiles to other ion species measured along the cores in moving windows in log space. We verify the method with a well dated section of the Belukha ice core from central Eurasia. There are excellent matches to volcanoes in the preindustrial, and clear extraction of volcanic peaks in the post-1940 period when a simple method based on calcium as a proxy for terrestrial sulfate fails due to anthropogenic sulfate deposition. We then attempt to use the same statistical scheme to locate volcanic sulfate horizons within three ice cores from Svalbard and a core from Mount Everest. Volcanic sulfate is <5% of the sulfate budget in every core, and differences in eruption signals extracted reflect the large differences in environment between western, northern and central regions of Svalbard. The Lomonosovfonna and Vestfonna cores span about the last 1000 years, with good extraction of volcanic signals, while Holtedahlfonna which extends to about AD1700 appears to lack a clear record. The Mount Everest core allows clean volcanic signal extraction and the core extends back to about AD700, slightly older than a previous flow model has suggested. The method may thus be used to extract historical volcanic records from a more diverse geographical range than hitherto.
Resumo:
Tholeiitic basalts were obtained from basaltic basement ranging in age from 6 to 17 m.y. on IPOD/DSDP Leg 63. The main rock types encountered at all sites but 473 are basaltic pillow lavas. Although many of these pillow basalts are highly or moderately altered, fresh glass is usually present. At Site 473, we recovered coarse-grained, massive basalts; no clearly defined pillowed forms were observed. Phenocrysts or microphenocrysts present in the Leg 63 basalts are Plagioclase and clinopyroxene at Site 469; olivine, Plagioclase, and spinel at Site 470; and olivine, Plagioclase, and clinopyroxene at Sites 472 and 473. Olivines of the basalts from Holes 470A and 472 (Fo85-88) are generally more magnesian than those of the Hole 473 basalts (Fo77-81). Also, plagioclases of Holes 470A and 472 basalts (An70-85) are generally more calcic than those of Holes 469 and 473 basalts (An66-72). Geochemical study of the Leg 63 basalts indicates that in all cases they are large-ion-lithophile (LIL) element depleted tholeiites like typical abyssal tholeiites. In particular, they are very similar in composition to those described from the eastern Pacific, although the degree of iron enrichment found in the Leg 63 basalts is not as extensive as in basalts from the Galapagos spreading center. Hence, the geochemical evidence of the Leg 63 basalts is compatible with their formation at a spreading center. Compositional variations in Leg 63 basalts from any single drill hole is small. Major and trace element data indicate that the samples from Holes 469 and 473 are more fractionated in chemical composition than are the samples from Holes 470A and 472; this compositional variation may be largely ascribed to differences in the extent of shallow-level fractional crystallization of similar parental magma. The Hole 472 samples, however, show a LIL element character distinct from the other Leg 63 samples.
Resumo:
The purpose of this study is to clarify the sedimentary history and chemical characteristics of clay minerals found in sediments deposited in the distal part of the Bengal Fan since the Himalayas were uplifted 17 m.y. ago. A total of seventy-eight samples were collected from three drilled cores which were to be used for the clay mineral analyses by means of XRD and ATEM. The results obtained from the analyses show that individual clay mineral species in the sediment samples at each site have similar features when the samples are of the same age, whereas these species have different features in samples of differing geological ages. Detrital clay minerals such as illite and chlorite were deposited in greater amounts than kaolinite and smectite during the Early to Middle Miocene. This means that the Himalayan uplift was vigorous at least until the Middle Miocene. In the Pliocene chemical weathering was more prevalent so that instead, in the distal part of the Bengal Fan, kaolinite shows the highest concentrations. This would accord with weaker uplift in the Himalayas. In the Pleistocene period, vigorous Himalayan uplift is characterized by illite-rich sediment in place of kaolinite. In the Holocene, smectite shows the highest concentration in place of the illite and kaolinite which were the predominant clay minerals of the earlier periods. Increasing smectite concentration suggests the Himalayan uplift to have been stable after the Pleistocene period. The smectite analyzed here is found to be dioctahedral Fe-beidellite, and it originated largely from the augite-basalt on the Indian Deccan Traps. The tri-octahedral chlorite is subdivided into three sub-species, an Fe-type, a Mg-type and an intermediate type. The mica clay mineral can be identified as di-octahedral illite which is rich in potassium. The chemical composition and morphology of each clay mineral appears to exhibit no change with burial depth in the sedimentary columns. This implies that there was no systematic transformation of clay minerals with time.
Resumo:
We present results from a field study of inorganic carbon (C) acquisition by Ross Sea phytoplankton during Phaeocystis-dominated early season blooms. Isotope disequilibrium experiments revealed that HCO3? was the primary inorganic C source for photosynthesis in all phytoplankton assemblages. From these experiments, we also derived relative enhancement factors for HCO3?/CO2 interconversion as a measure of extracellular carbonic anhydrase activity (eCA). The enhancement factors ranged from 1.0 (no apparent eCA activity) to 6.4, with an overall mean of 2.9. Additional eCA measurements, made using membrane inlet mass spectrometry (MIMS), yielded activities ranging from 2.4 to 6.9 U/[?g chl a] (mean 4.1). Measurements of short-term C-fixation parameters revealed saturation kinetics with respect to external inorganic carbon, with a mean half-saturation constant for inorganic carbon uptake (K1/2) of ~380 ?M. Comparison of our early springtime results with published data from late-season Ross Sea assemblages showed that neither HCO3? utilization nor eCA activity was significantly correlated to ambient CO2 levels or phytoplankton taxonomic composition. We did, however, observe a strong negative relationship between surface water pCO2 and short-term 14C-fixation rates for the early season survey. Direct incubation experiments showed no statistically significant effects of pCO2 (10 to 80 Pa) on relative HCO3? utilization or eCA activity. Our results provide insight into the seasonal regulation of C uptake by Ross Sea phytoplankton across a range of pCO2 and phytoplankton taxonomic composition.
Resumo:
Diabasic rocks were recovered at Sites 469 and 471 on IPOD/DSDP Leg 63. The diabasic rocks are composed mainly of Plagioclase, clinopyroxene, and low-temperature alteration products. In addition to these phases, a considerable amount of primary biotite and lesser colorless amphibole are observed in some of the Site 471 diabases. Major and trace element data suggest that these rocks are tholeiitic; however, their highly altered nature obscures their petrologic affinity with the DSDP Leg 63 tholeiitic basalts and others from the nearby Pacific ocean floor. It is likely that the Site 469 and 471 diabasic rocks represent products of off-ridge intrusive activity.
Resumo:
The Holocene Twin Slides form the most recent of recurrent mass wasting events along the NE portion of Gela Basin within the Sicily Channel, central Mediterranean Sea. Here, we present new evidence on the morphological evolution and stratigraphic context of this coeval slide complex based on deepdrilled sediment sequences providing a >100 ka paleo-oceanographic record. Both Northern (NTS) and Southern Twin Slide (STS) involve two failure stages, a debris avalanche and a translational slide, but are strongly affected by distinct preconditioning factors linked to the older and buried Father Slide. Core-acoustic correlations suggest that sliding occurred along sub-horizontal weak layers reflecting abrupt physical changes in lithology or mechanical properties. Our results show further that headwall failure predominantly took place along sub-vertical normal faults, partly through reactivation of buried Father Slide headscarps.