974 resultados para Photovoltaic cells.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low voltage solar panels increase the reliability of solar panels due to reduction of in series associations the configurations of photovoltaic cells. The low voltage generation requires DCDC converters devices with high efficiency, enabling raise and regulate the output voltage. This study analyzes the performance of a photovoltaic panel of Solarex, MSX model 77, configured to generate an open circuit voltage of 10.5 V, with load voltage of 8.5 V, with short circuit current of 9 A and a power of 77 W. The solar panel was assembled in the isolated photovoltaic system configuration, with and without energy storage as an interface with a DCDC converter, Booster topology. The converter was designed and fabricated using SMD (Surface Mounted Devices) technology IC (integrated circuit) that regulates its output voltage at 14.2 V, with an efficiency of 87% and providing the load a maximum power of 20.88 W. The system was installed and instrumented for measurement and acquisition of the following data: luminosities, average global radiation (data of INPE Instituto Nacional de Pesquisas Espaciais), solar panel and environment temperatures, solar panel and DC-DC converter output voltages, panel, inverter, and battery charge output currents. The photovoltaic system was initially tested in the laboratory (simulating its functioning in ideal conditions of operation) and then subjected to testing in real field conditions. The panel inclination angle was set at 5.5°, consistent with the latitude of Natal city. Factors such as climatic conditions (simultaneous variations of temperature, solar luminosities and ra diation on the panel), values of load resistance, lower limit of the maximum power required by the load (20.88 W) were predominant factors that panel does not operate with energy efficiency levels greater than 5 to 6%. The average converter efficiency designed in the field test reached 95%

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the researches on preparation and test of nanostructured materials, titanium dioxide and zinc oxide have been the most frequent studied oxides. In order to extend their properties, composites have been prepared using three different methods: Polyol Method, Sol-gel Process and a combination of the two processes (hybrid process). Recent research showed best properties in composite materials than in pure oxides. In this work is presented the preparation and the structural characterization of ZnO-TiO2 composite nanostructures to be tested for their performance in electrocatalysis and in further trial on photovoltaic cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To become competitive, ultimately, photovoltaics should have its costs reduced and use photovoltaic systems of greater efficiency. The main steps in this direction are the use of new materials, the improvement in the manufacture of modules and the adoption of techniques of maximum power point tracking and of solar tracking. This article aims at presenting the project and development of an azimuth and elevation solar tracker, based on a new conception of the positioning sensor, composed of an array of four photoresistors. The two direct current motors that operate in the vertical and horizontal axes are controlled by a proportional-integral microcontroller. The conditions of the project were low cost, small energy consumption and versatility. The microcontroller can also incorporate a maximum power point tracking algorithm. The performance of solar tracker prototype in the initial phase of field tests can be considered appropriate. © Institution of Engineers Australia, 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solar energy is far the largest source of energy available in earth and has attracted for milleniuns, the attention and interest for a rational use. The solar energy which strikes the Earth in one hour is bigger than the whole consume of energy in Earth in one year. Among the forms of transformation of this clean, renewable energy, the electrical conversion, photovoltaic cells, have the materials based on silicon or germanium semiconductors due to its technology and production processes involved still have a high production cost. An alternative to this solar cell is based on a synthetic dye and a semiconductor nanocrystalline TiO2, titanium dioxide, called DSC (Dye-Sensitized Cells), which have a cost of up to 80% lower than silicon cells

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the high value of the bill that the Brazilian has been paying, one of the most expensive in the world, is becoming increasingly attractive the option for renewable energy in form of distributed micro and minigeneration. In other words, the renewable energy sources are becoming attractive not only because of environmental concerns, but also due to economic issues. This has become even more relevant and concrete after approval of rules by National Agency of Electric Energy (ANEEL) on 4/17/2012 (Normative Resolution n ° 482/2012 of 04/17/2012) aimed at reducing barriers to installation of small distributed generation, including microgeneration, with up to 100 kW of power, and minigeneration, 100 kW to 1 MW. The Normative Resolution n ° 482/2012 creates the Energy Clearing System, which allows consumers to install small generators in its consumer unit and exchange energy with the local distributor. The rule applies to generators that use renewable sources of energy (hydro, solar, biomass, wind and cogeneration qualified). In this context, this paper presents a technical and economic analysis of installing a residential microgenerating plant composed of photovoltaic cells, solar panels and small wind turbines

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the high value of the bill that the Brazilian has been paying, one of the most expensive in the world, is becoming increasingly attractive the option for renewable energy in form of distributed micro and minigeneration. In other words, the renewable energy sources are becoming attractive not only because of environmental concerns, but also due to economic issues. This has become even more relevant and concrete after approval of rules by National Agency of Electric Energy (ANEEL) on 4/17/2012 (Normative Resolution n ° 482/2012 of 04/17/2012) aimed at reducing barriers to installation of small distributed generation, including microgeneration, with up to 100 kW of power, and minigeneration, 100 kW to 1 MW. The Normative Resolution n ° 482/2012 creates the Energy Clearing System, which allows consumers to install small generators in its consumer unit and exchange energy with the local distributor. The rule applies to generators that use renewable sources of energy (hydro, solar, biomass, wind and cogeneration qualified). In this context, this paper presents a technical and economic analysis of installing a residential microgenerating plant composed of photovoltaic cells, solar panels and small wind turbines

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of society concerns are preserving the environment and the growing energy demand. These two issues are in conflict since most of the energy used today in some way harms the environment. Then is essential to develop and implement ways to clean and renewable energy. In this way, solar energy stands out as a source of clean energy, renewable, abundant and acessible. Solar energy can be harnessed by photovoltaic cells or by solar collectors. The aim of this article is analysethe yield of the solar heather assembled with hydraulic conductive and plastic bottles using three different materials for hydraulic conductors, in order to compare these efficiences and analyze material which has the best cost-benefit in this type of application. The materials analyzed in this study were copper, aluminum and PVC. For this analysis were assembled three alike solar heaters using each one of these materials, and were done several series of measurements of the temperature water output to each heat with flow between 10 and 30 liters per hour. With these data we can analyze the yield and the performance of copper, aluminum and PVC in this application. So we can conclude that aluminum has a higher efficiency, followed by PVC, and the copper had the lowest efficiency. This behavior kept for all values of flow rates examined

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research, carried out during the PhD in Materials Engineering, deals with the creation of layers, with different functionality, deposited on a ceramic substrate, to obtain photovoltaic cells for electricity production. The research activities are included in the project PRRIITT, Measure 4 (Development of Networks), Action A (Research and Technology Transfer Laboratories), Thematic reference 3 (Advanced materials applications development), co-financed by the Emilia Romagna Region, for the creation of CECERBENCH laboratory, which aims to develop "Tiles with a functionalised surface”. The innovation lies in the study of materials and in the development of technologies to achieve a "photovoltaic surface", directly in the tiles production process. The goal is to preserve the technical characteristics, and to make available new surfaces, exploiting renewable energy sources. The realization of Building Integrated PhotoVoltaic (BIPV) is nowadays a more and more spread tendency. The aims of the research are essentially linked to the need to diversify the actual ceramic tile production (which is strongly present in the Emilia Romagna Region ), and to provide a higher added value to the tiles. Solar energy production is the primary objective of the functionalization, and has a relevant ecological impact, taking into account the overwhelming global energy demand. The specific activities of the PhD were carried out according to the achievement of scientific and technological objectives of CECERBENCH laboratory, and involved the collaboration in design solutions, to obtain the cells directly on the tiles surface. The author has managed personally a part of the research project. Layers with different features were made: - Electrically conductive layers, directly on the ceramic tiles surface; - Layers to obtain the photovoltaic functionality; - Electrically insulating, protective layers (double function). For each layer, the most suitable materials have been selected. Among the technical application, the screen printing was used. This technique, widely used in ceramics, has many application areas, including the electronics and photovoltaic industries. It is an inexpensive technique, easy to use in industrial production lines. The screen printing technique was therefore studied in depth by theoretical considerations, and through the use of rheological measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since conjugated polymers, i.e. polymers with spatially extended pi-bonding system have offered unique physical properties, unobtainable for conventional polymers, significant research efforts directed to better understanding of their chemistry, physics and engineering have been undertaken in the past two and half decades. In this thesis we discuss the synthesis, characterisation and investigation of conjugated semiconducting organic materials for electronic applications. Owing to the versatile properties of metal-organic hybrid materials, there is significant promise that these materials can find use in optical or electronic devices in the future. In addressing this issue, the synthesis of bisthiazol-2-yl-amine (BTA) based polymers is attempted and their metallation is investigated. The focus of this work has been to examine whether the introduction of coordinating metal ions onto the polymer backbone can enhance the conductivity of the material. These studies can provide a basis for understanding the photophysical properties of metal-organic polymers based on BTA. In their neutral (undoped) form conjugated polymers are semiconductors and can be used as active components of plastics electronics such as polymer light-emitting diodes, polymer lasers, photovoltaic cells, field-effect transistors, etc. Toward this goal, it is an objective of the study to synthesize and characterize new classes of luminescent polymeric materials based on anthracene and phenanthrene moieties. A series of materials based on polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits are not only presented but the synthesis and characterization of step-ladder and ladder poly(p-phenylene-alt-anthrylene)s containing 9,10-anthrylene building groups within the main chain are also explored. In a separate work, a series of soluble poly-2,7- and 3,6-phenanthrylenes are synthesized. This can enable us to do a systematic investigation into the optical and electronic properties of PPP-like versus PPV-like. Besides, the self-organization of 3,6-linked macrocyclic triphenanthrylene has been investigated by 2D wide-angle X-ray scattering experiments performed on extruded filaments in solution and in the bulk. Additionally, from the concept that donor-acceptor materials can induce efficient electron transfer, the covalent incorporation of perylene tetracarboxydiimide (PDI) into one block of a poly(2,7-carbazole) (PCz)-based diblock copolymer and 2,5-pyrrole based on push-pull type material are achieved respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.